Rectas paralelas: Identificando y definiendo elementos

ejemplos con soluciones para Rectas paralelas: Identificando y definiendo elementos

Ejercicio #1

¿Cuáles rectas son perpendiculares entre sí?

Solución en video

Solución Paso a Paso

Recordemos que las rectas perpendiculares son rectas que forman entre sí un ángulo recto de 90 grados.

El único dibujo donde se puede ver que las rectas forman un ángulo recto de 90 entre sí es el dibujo A.

Respuesta

Ejercicio #2

¿Qué rectas son perpendiculares entre sí?

Solución en video

Solución Paso a Paso

Las rectas perpendiculares son rectas que forman entre sí un ángulo recto de 90 grados.

El único dibujo donde las rectas forman un ángulo recto de 90 grados entre sí es el dibujo A.

Respuesta

Ejercicio #3

¿En cuáles de las figuras hay rectas paralelas?

Solución en video

Solución Paso a Paso

Las rectas paralelas son rectas, si las continuamos nunca se encontrarán.

En los dibujos A+B+D si continuamos las rectas veremos que en un punto determinado se juntan.

En el dibujo C, las rectas nunca se encontrarán, por lo tanto son líneas paralelas.

Respuesta

Ejercicio #4

Las rectas no son del mismo tamaño, ¿son paralelas?

Solución en video

Solución Paso a Paso

Recuerda las propiedades de las rectas paralelas.

Como no existe conexión entre el tamaño de la recta y el paralelismo, las líneas son realmente paralelas.

Respuesta

Verdadero

Ejercicio #5

¿Qué podemos decir de las siguientes rectas?

Solución en video

Solución Paso a Paso

Recordemos las diferentes propiedades de las rectas.

Las rectas no son paralelas ya que se encuentran.

Las rectas no son perpendiculares ya que no forman un ángulo recto de 90 grados entre sí.

Por lo tanto, ninguna respuesta es correcta.

Respuesta

Ninguna respuesta es correcta

Ejercicio #6

¿Cuál de los dibujos tienen rectas paralelas?

AB

Solución en video

Solución Paso a Paso

En el dibujo B, observamos dos ángulos rectos, lo que nos enseña que son prácticamente iguales. De esto, podemos concluir que son ángulos correspondientes, ubicados en la intersección de dos líneas paralelas.

En el dibujo A, solo vemos un ángulo recto, por lo que no podemos deducir que las dos líneas sean paralelas.

Respuesta

B

Ejercicio #7

Dado el dibujo, ¿las rectas AB y DC son paralelas?

2X+102X+102X+1070-X70-X70-XAAABBBCCCDDD

Solución en video

Solución Paso a Paso

Para que las rectas sean paralelas, los dos ángulos deben ser iguales (según la definición de ángulos correspondientes).

Comparemos los ángulos:

2x+10=70x 2x+10=70-x

2x+x=7010 2x+x=70-10

3x=60 3x=60

x=20 x=20

Una vez que hayamos encontrado la incógnita, lo colocaremos en ambos ángulos para ver cuánto vale cada uno.

Reemplazamos el primer ángulo:

2x+10=2×20+10 2x+10=2\times20+10

40+10=50 40+10=50

Reemplazamos el segundo ángulo:

7020=50 70-20=50

Descubrimos que los ángulos son iguales entre sí, por lo tanto, las rectas son paralelas.

Respuesta

Verdadero

Ejercicio #8

¿Cuáles rectas son paralelas entre sí?

Solución en video

Respuesta

Ejercicio #9

¿Qué rectas se cruzan?

1234

Solución en video

Respuesta

1 , 3

Ejercicio #10

¿Qué tiene en común las cuatro figuras?

1234

Solución en video

Respuesta

Todas perpendiculares

Ejercicio #11

¿Qué tienen en común las cuatro figuras?

1234

Solución en video

Respuesta

Todas paralelas

Ejercicio #12

¿Qué tienen en común las 4 figuras?

1234

Solución en video

Respuesta

Todas intersecciones

Ejercicio #13

¿Qué tienen en común las 4 figuras?

1234

Solución en video

Respuesta

Todas perpendiculares

Ejercicio #14

El triángulo ABC es isósceles

¿Es el segmento DA paralelo al BF?

AAABBBCCCDDDEEEGGGFFF60606060

Solución en video

Respuesta

Si