ejemplos con soluciones para Perímetro del trapecio: Encontrar el área de la base en el perímetro y viceversa

Ejercicio #1

Dado el trapecio ABCD isósceles.

Dado en cm: BC=7  altura del trapecio h=5 perímetro del trapecio P=34

Calcula el área del trapecio

777h=5h=5h=5AAABBBCCCDDDEEE

Solución en video

Solución Paso a Paso

Como ABCD es un trapecio, se puede argumentar que:

AD=BC=7 AD=BC=7

La fórmula para hallar el área será

SABCD=(AB+DC)×h2 S_{ABCD}=\frac{(AB+DC)\times h}{2}

Como nos dan el perímetro del trapecio, podemos encontrarAB+DC AB+DC

PABCD=7+AB+7+DC P_{ABCD}=7+AB+7+DC

34=14+AB+DC 34=14+AB+DC

3414=AB+DC 34-14=AB+DC

20=AB+DC 20=AB+DC

Ahora colocaremos el dato que recibimos en la fórmula para calcular el área del trapecio:

S=20×52=1002=50 S=\frac{20\times5}{2}=\frac{100}{2}=50

Respuesta

50

Ejercicio #2

Dado que ABCD es un trapecio isosceles

AB=3 CD=6

El área del trapecio es igual a 9 cm²

¿Cuál es el perímetro del trapecio?

333666AAABBBDDDCCCEEE

Solución en video

Solución Paso a Paso

Encontraremos la altura BE calculando la fórmula del área trapezoidal:

S=(AB+CD)2×h S=\frac{(AB+CD)}{2}\times h

Reemplazamos los datos conocidos: 9=(3+6)2×BE 9=\frac{(3+6)}{2}\times BE

Multiplicamos por 2 para deshacernos de la fracción:

9×2=9×BE 9\times2=9\times BE

18=9BE 18=9BE

Dividimos las dos secciones por 9:

189=9BE9 \frac{18}{9}=\frac{9BE}{9}

2=BE 2=BE

Si trazamos la altura de A a CD obtenemos un rectángulo y dos triángulos congruentes. Es decir:

AF=BE=2 AF=BE=2

AB=FE=3 AB=FE=3

ED=CF=1.5 ED=CF=1.5

Ahora encontraremos uno de los catetos a través del teorema de Pitágoras.

Nos centraremos en el triángulo BED:

BE2+ED2=BD2 BE^2+ED^2=BD^2

Reemplazamos los datos conocidos:

22+1.52=BD2 2^2+1.5^2=BD^2

4+2.25=DB2 4+2.25=DB^2

6.25=DB2 6.25=DB^2

Extraemos la raíz:

6.25=DB \sqrt{6.25}=DB

2.5=DB 2.5=DB

Ahora que hemos encontrado DB, se puede argumentar que:

AC=BD=2.5 AC=BD=2.5

Calculamos el perímetro del trapecio:6+3+2.5+2.5= 6+3+2.5+2.5=

9+5=14 9+5=14

Respuesta

14

Ejercicio #3

Dado el trapecio del dibujo:

S=102S=102S=102121212666888 El área del trapecio es 102.

¿Cuál es su perímetro?

Solución en video

Respuesta

36.2

Ejercicio #4

Dado que el perímetro del trapecio es igual a

16.5+24.25 16.5+\sqrt{24.25}

Halla el área del trapecio

555777AAABBBDDDCCC

Solución en video

Respuesta

27

Ejercicio #5

Dado que el área del trapecio en ángulo recto es igual a 102, halla su perímetro con base en los datos de la figura.

S=102S=102S=102888666121212AAABBBCCCDDD

Solución en video

Respuesta

x=36.2 x=36.2

Ejercicio #6

Dado que ABCD es un trapecio isosceles

El perímetro del trapecio es igual a 22 cm

Halla el área del trapecio

444XXX888XXXAAABBBDDDCCCEEE

Solución en video

Respuesta

6×21 6\times\sqrt{21}