ejemplos con soluciones para Circunferencia: Usando formas geométricas adicionales

Ejercicio #1

A continuación hay un círculo delimitado por un paralelogramo:

36

Todos los puntos de encuentro son tangentes al círculo.
La circunferencia es 25.13.

¿Cuál es el área del paralelogramo?

Solución en video

Solución Paso a Paso

Primero, agregamos letras como puntos de referencia:

Observemos los puntos A y B.

Sabemos que dos rectas tangentes a una circunferencia y que parten del mismo punto son paralelas entre sí.

Por lo tanto:

AE=AF=3 AE=AF=3
BG=BF=6 BG=BF=6

Y desde aquí podemos calcular:

AB=AF+FB=3+6=9 AB=AF+FB=3+6=9

Ahora necesitamos la altura del paralelogramo.

Sabemos que F es tangente al círculo, por lo que el diámetro que sale del punto F también será la altura del paralelogramo.

También se sabe que el diámetro es igual a dos radios.

Dado que la circunferencia es 25,13.

Fórmula de circunferencia:2πR 2\pi R
Reemplazamos y resolvemos:

2πR=25.13 2\pi R=25.13
πR=12.565 \pi R=12.565
R4 R\approx4

La altura del paralelogramo es igual a dos radios, es decir, 8.

Y desde aquí puedes calcular con una fórmula de área del paralelogramo:

AlturaXLado AlturaXLado

9×872 9\times8\approx72

Respuesta

72 \approx72

Ejercicio #2

Dado un paralelogramo delimitado por un círculo:

36

Todos los puntos de encuentro son tangentes al círculo.
La circunferencia es 25.13.

¿Cuál es el área de las zonas marcadas en azul?

Solución en video

Solución Paso a Paso

Primero, agregamos letras como puntos de referencia:

Observemos los puntos A y B.

Sabemos que dos rectas tangentes a una circunferencia y que parten del mismo punto son paralelas entre sí.

Por lo tanto:

AE=AF=3 AE=AF=3
BG=BF=6 BG=BF=6

Desde aquí podemos calcular:

AB=AF+FB=3+6=9 AB=AF+FB=3+6=9

Ahora necesitamos la altura del paralelogramo.

Sabemos que F es tangente al círculo, por lo que el diámetro que sale del punto F también será la altura del paralelogramo.

También se sabe que el diámetro es igual a dos radios.

Se sabe que la circunferencia del círculo es 25,13.

Fórmula de la circunferencia:2πR 2\pi R
Reemplazamos y resolvemos:

2πR=25.13 2\pi R=25.13
πR=12.565 \pi R=12.565
R4 R\approx4

La altura del paralelogramo es igual a dos radios, es decir, 8.

Y desde aquí es posible calcular el área del paralelogramo:

Lado x Altura \text{Lado }x\text{ Altura} 9×872 9\times8\approx72

Ahora, calculamos el área del círculo según la fórmula:πR2 \pi R^2

π42=50.26 \pi4^2=50.26

Ahora, resta el área del círculo de la superficie del trapecio para obtener la respuesta:

7256.2421.73 72-56.24\approx21.73

Respuesta

21.73 \approx21.73

Ejercicio #3

En el dibujo, se da un trapecio, en cuya base superior se encuentra un semicírculo

La longitud del segmento resaltado en cm es 7π 7\pi

Calcula el área del trapecio

181818777AAABBBCCCDDDEEE

Solución en video

Respuesta

112

Ejercicio #4

ABCD deltoide cuya área es 58 cm²

DB=4 AE=3

¿Cuál es la razón entre las circunferencias cuyo diámetro es AE y cuyo diámetro es EC?

S=58S=58S=58333AAABBBCCCDDDEEE4

Solución en video

Respuesta

3:26

Ejercicio #5

El área del rectángulo del dibujo es 28X cm².

¿Cuál es la circunferencia cuyo diámetro es el lado corto del rectángulo?

S=28XS=28XS=28X777

Solución en video

Respuesta

4πx 4\pi x

Ejercicio #6

La circunferencia del dibujo es 36a2 36a^2 cm

BO es el radio

ABCD es un paralelogramo,
BO es perpendicular a DC

DC=4a \frac{4}{a}

¿Cuál es el área del paralelogramo?

BBBOOOCCCDDDAAA

Solución en video

Respuesta

72aπ 72\frac{a}{\pi} cm²

Ejercicio #7

En el dibujo un rectángulo y un círculo cuyo centro es la esquina del rectángulo

Dado R=4

¿Cuál es la longitud de la parte resaltada en el dibujo?

RRRDDDIII32

Solución en video

Respuesta

3245π \frac{32}{45}\pi