ejemplos con soluciones para Paréntesis en orden avanzado de operaciones: Suma, resta, multiplicación y división

Ejercicio #1

(7+2)×(3+8)= (7+2)\times(3+8)=

Solución en video

Solución Paso a Paso

Simplifica esta expresión prestando atención al orden de las operaciones aritméticas que dice que la potenciación precede a la multiplicación y la división antes que la suma y la resta y que los paréntesis preceden a todas ellas.

Por lo tanto, primero comencemos simplificando las expresiones entre paréntesis, posteriormente realizamos la multiplicación entre ellas:

(7+2)(3+8)=911=99 (7+2)\cdot(3+8)= \\ 9\cdot11=\\ 99

Por lo tanto, la respuesta correcta es la opción B.

Respuesta

99

Ejercicio #2

96:(4×3)1= 9-6:(4\times3)-1=

Solución en video

Solución Paso a Paso

Simplificamos esta expresión prestando atención al orden de las operaciones aritméticas que dice que la potenciación precede a la multiplicación y la división antes que la suma y la resta y que los paréntesis preceden a todas ellas.

Por lo tanto, comenzamos realizando la multiplicación entre paréntesis, posteriormente realizamos la operación de división y finalizamos realizando la operación de resta:

96:(43)1=96:121=90.51=7.5 9-6:(4\cdot3)-1= \\ 9-6:12-1= \\ 9-0.5-1= \\ 7.5

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

7.5

Ejercicio #3

4:2×(5+4+6)= 4:2\times(5+4+6)=

Solución en video

Solución Paso a Paso

Simplificamos esta expresión prestando atención al orden de las operaciones aritméticas que dice que la potenciación precede a la multiplicación y la división antes que la suma y la resta y que los paréntesis preceden a todas ellas.

Por lo tanto, comenzamos simplificando las expresiones entre paréntesis:
4:2(5+4+6)=4:215 4:2\cdot(5+4+6)= \\ 4:2\cdot15 Tengamos en cuenta que entre la operación de multiplicación y la operación de división no se define precedencia para una de las operaciones, por lo tanto calculamos el resultado de la expresión obtenida en el último paso de izquierda a derecha (que es el cálculo habitual orden en operaciones aritméticas), es decir, primero realizamos la operación de división, es la primera desde la izquierda y posteriormente realizamos la operación de multiplicación en la fila siguiente:

4:215=215=30 4:2\cdot15 =\\ 2\cdot15 =\\ 30 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

30 30

Ejercicio #4

Resuelve el ejercicio:

3:4(71)+3= 3:4\cdot(7-1)+3=

Solución en video

Solución Paso a Paso

Primero resolvemos el ejercicio entre paréntesis:

3:46+3= 3:4\cdot6+3=

34×6+3= \frac{3}{4}\times6+3=

Multiplicamos:

184+3= \frac{18}{4}+3=

412+3=712 4\frac{1}{2}+3=7\frac{1}{2}

Respuesta

712 7\frac{1}{2}

Ejercicio #5

(12+2)×(3+5)= (12+2)\times(3+5)=

Solución en video

Solución Paso a Paso

Simplifica esta expresión prestando atención al orden de las operaciones aritméticas que dice que la potenciación precede a la multiplicación y la división antes que la suma y la resta y que los paréntesis preceden a todas ellas.

Por lo tanto, primero comencemos simplificando las expresiones entre paréntesis, posteriormente realizamos la multiplicación entre ellas:

(12+2)(3+5)=148=112 (12+2)\cdot(3+5)= \\ 14\cdot8=\\ 112

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

112

Ejercicio #6

(3+20)×(12+4)= (3+20)\times(12+4)=

Solución en video

Solución Paso a Paso

Simplifica esta expresión prestando atención al orden de las operaciones aritméticas que dice que la potenciación precede a la multiplicación y la división antes que la suma y la resta y que los paréntesis preceden a todas ellas.

Por lo tanto, primero comencemos simplificando las expresiones entre paréntesis, posteriormente realizamos la multiplicación entre ellas:

(3+20)(12+4)=2316=368 (3+20)\cdot(12+4)=\\ 23\cdot16=\\ 368

Por lo tanto, la respuesta correcta es la opción A.

Respuesta

368

Ejercicio #7

(40+70+357)×9= (40+70+35-7)\times9=

Solución en video

Solución Paso a Paso

Simplificamos esta expresión observando el orden de las operaciones aritméticas que dice que la exponenciación precede a la multiplicación, y la división a la suma y la resta, y que los paréntesis preceden a todo.

Por lo tanto, primero comenzamos simplificando la expresión entre paréntesis, posteriormente multiplicamos el resultado de la expresión entre paréntesis por el término que los multiplicó:

(40+70+357)9=1389=1242 (40+70+35-7)\cdot9= \\ 138\cdot9=\\ 1242

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

1242

Ejercicio #8

0.6×(1+2)= 0.6\times(1+2)=

Solución en video

Respuesta

1.8

Ejercicio #9

(743)(1562)+352= (7-4-3)(15-6-2)+3\cdot5\cdot2=

Solución en video

Respuesta

30

Ejercicio #10

(831)×4×3= (8-3-1)\times4\times3=

Solución en video

Respuesta

48

Ejercicio #11

(4+7+3):2:3= (4+7+3):2:3=

Solución en video

Respuesta

213 2\frac{1}{3}

Ejercicio #12

(9+7+3)(4+5+3)(734)= (9+7+3)(4+5+3)(7-3-4)=

Solución en video

Respuesta

0

Ejercicio #13

(14+745414)10:7:5=? (\frac{1}{4}+\frac{7}{4}-\frac{5}{4}-\frac{1}{4})\cdot10:7:5=\text{?}

Solución en video

Respuesta

17 \frac{1}{7}