(62)3=
\( (\frac{2}{6})^3= \)
\( (\frac{4^2}{7^4})^2= \)
\( 300^{-4}\cdot(\frac{1}{300})^{-4}=? \)
\( 5^4\cdot(\frac{1}{5})^4=\text{?} \)
\( \left(\frac{6}{8}\right)^2= \)
Utilizamos la fórmula:
Simplificamos:
Utilizamos la fórmula:
Ahora utilizamos la fórmula para multiplicar potencias:
Usamos la propiedad de potenciación para un exponente negativo:
Aplicamos esta propiedad en el problema:
Cuando aplicamos la mencionada propiedad de potenciación en el segundo término de la multiplicación, entendiendo que:
A continuación, recordamos la propiedad de potenciación para un exponente elevado a otro exponente:
Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:
Cuando en una primera etapa aplicamos la propiedad de potenciación mencionada y luego simplificamos la expresión resultante,
Resumiendo la resolución al problema hasta aquí, obtuvimos que:
Continuamos y recordamos la propiedad de potenciación para la multiplicación entre términos con bases idénticas:
Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:
Posteriormente recordamos que elevar cualquier número a la potencia de cero (excepto el número 0) dará como resultado 1, es decir que:
Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:
Resumiendo los pasos de resolución, obtenemos que:
Por lo tanto, la respuesta correcta es la opción A.
1
Este problema se puede resolver utilizando las propiedades de potencias para una potencia negativa, potencia sobre una potencia y la propiedad de potencias para el producto entre términos con bases idénticas, que es la forma natural de la solución,
Pero aquí preferimos resolver de otra manera que es un poco más rápido:
A tal efecto, la ley de potencia por potencia se aplica a los paréntesis en los que se multiplican los términos, pero en sentido contrario:
Dado que en la expresión en el problema existe una multiplicación entre dos términos con potencias idénticas, se puede utilizar esta ley en su sentido contrario, por lo que aplicaremos esta propiedad al problema:
Dado que la multiplicación en el problema dado es entre términos con la misma potencia, podríamos aplicar esta ley en la dirección opuesta y escribir la expresión como la multiplicación de las bases de los términos entre paréntesis a los que se aplica la misma potencia.
Continuaremos y simplificaremos la expresión entre paréntesis, lo haremos rápidamente si notamos que entre paréntesis hay una multiplicación entre dos números opuestos, entonces su producto dará el resultado: 1, aplicaremos este entendimiento a la expresión que llegamos en el último paso:
Cuando en el primer paso aplicamos el entendimiento anterior, y luego usamos el hecho de que elevar el número 1 a cualquier potencia siempre dará el resultado: 1, lo que significa que:
Resumiendo los pasos para resolver el problema, obtenemos que:
Por lo tanto, la respuesta correcta es la opción b.
1
\( \left(\frac{3}{2}\right)^3= \)
\( \left(\frac{4}{7}\right)^2= \)
\( \left(\frac{2}{3}\right)^2= \)
\( \left(\frac{1}{2}\right)^2= \)
\( \left(\frac{4}{5}\right)^3= \)
\( \left(\frac{4}{5}\right)^2= \)
¿Cuál es el resultado de la siguiente potencia?
\( (\frac{2}{3})^3 \)
\( (\frac{13}{2})^0\cdot(\frac{2}{13})^{-2}\cdot(\frac{13}{2})^{-5}=\text{?} \)
\( \left(\frac{a\times b}{2\times x}\right)^3= \)
\( \left(\frac{a\times3}{2\times x}\right)^3= \)
¿Cuál es el resultado de la siguiente potencia?
\( \left(\frac{6}{x\times y}\right)^2= \)
\( \left(\frac{2\times a}{3}\right)^2= \)
Todas las respuestas son correctas