ejemplos con soluciones para Aplicación de reglas de exponentes combinados: Más de una incógnita

Ejercicio #1

ababa2 a\cdot b\cdot a\cdot b\cdot a^2

Solución en video

Solución Paso a Paso

Usamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Cabe recalcar que esta propiedad sólo es válida para términos con bases idénticas,

Retornamos al problema

Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:

ababa2=aaa2bb a\cdot b\operatorname{\cdot}a\operatorname{\cdot}b\operatorname{\cdot}a^2=a\cdot a\cdot a^2\cdot b\cdot b Posteriormente aplicamos la ley de potencias mencionada para cada tipo de término por separado,

aaa2bb=a1+1+2b1+1=a4b2 a\cdot a\cdot a^2\cdot b\cdot b=a^{1+1+2}\cdot b^{1+1}=a^4\cdot b^2

Cuando en realidad aplicamos la ley antes mencionada por separado - para los términos cuyas basea a y para los términos cuyas bases b b y sumamos los exponentes cuando insertamos todos los términos con la misma base en la misma base.

Por lo tanto, la respuesta correcta es la opción c.

Nota:

Usamos el hecho de que:

a=a1 a=a^1 y lo mismo para b b .

Respuesta

a4b2 a^4\cdot b^2

Ejercicio #2

E6F4E0F7E= E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Cabe recalcar que esta propiedad sólo es válida para términos con bases idénticas,

Retornamos al problema

Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:

E6F4E0F7E=E6E0EF4F7 E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7 Posteriormente aplicamos la ley de potencias mencionada para cada tipo de término por separado,

E6E0EF4F7=E6+0+1F4+7=E7F3 E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7=E^{6+0+1}\cdot F^{-4+7}=E^7\cdot F^3

Cuando en realidad aplicamos la ley antes mencionada por separado - para los términos cuyas baseE E y para los términos cuyas bases F F y sumamos los exponentes cuando insertamos todos los términos con la misma base en la misma base.

La respuesta correcta es entonces la opción d.

Nota:

Usamos el hecho de que:

E=E1 E=E^1 .

Respuesta

E7F3 E^7\cdot F^3

Ejercicio #3

c1d6d2c3c2= c^{-1}\cdot d^6\cdot d^{-2}\cdot c^3\cdot c^2=

Solución en video

Respuesta

c4d4 c^4\cdot d^4