ejemplos con soluciones para La fórmula de la diferencia de cuadrados: Resolución del problema

Ejercicio #1

6016y+y2=4 60-16y+y^2=-4

Solución en video

Solución Paso a Paso

Resolvamos la ecuación dada:

6016y+y2=4 60-16y+y^2=-4 Primero, organicemos la ecuación moviendo los términos:

6016y+y2=46016y+y2+4=0y216y+64=0 60-16y+y^2=-4 \\ 60-16y+y^2+4=0 \\ y^2-16y+64=0 Ahora, notemos que podemos descomponer la expresión en el lado izquierdo usando la fórmula corta de factorización cuadrática:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-2\textcolor{red}{a}\textcolor{blue}{b}+\textcolor{blue}{b}^2 Esto se hace usando el hecho de que:

64=82 64=8^2 Así que presentemos el término exterior en el lado derecho como un cuadrado:

y216y+64=0y216y+82=0 y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-16y+\textcolor{blue}{8}^2=0 Ahora examinemos de nuevo la fórmula corta de factorización que mencionamos anteriormente:

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 Y la expresión en el lado izquierdo de la ecuación que obtuvimos en el último paso:

y216y+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2=0 Notemos que los términos y2,82 \textcolor{red}{y}^2,\hspace{6pt}\textcolor{blue}{8}^2 efectivamente coinciden con la forma del primer y tercer término en la fórmula corta de multiplicación (que están resaltados en rojo y azul),

Pero para que podamos descomponer la expresión relevante (que está en el lado izquierdo de la ecuación) usando la fórmula corta que mencionamos, la coincidencia con la fórmula corta también debe aplicarse al término restante, es decir, el término medio en la expresión (subrayado):

(ab)2=a22ab+b2 (\textcolor{red}{a}-\textcolor{blue}{b})^2=\textcolor{red}{a}^2-\underline{2\textcolor{red}{a}\textcolor{blue}{b}}+\textcolor{blue}{b}^2 En otras palabras - nos preguntaremos si es posible presentar la expresión en el lado izquierdo de la ecuación como:

y216y+82=0?y22y8+82=0 \textcolor{red}{y}^2-\underline{16y}+\textcolor{blue}{8}^2 =0 \\ \updownarrow\text{?}\\ \textcolor{red}{y}^2-\underline{2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}}+\textcolor{blue}{8}^2 =0 Y efectivamente se cumple que:

2y8=16y 2\cdot y\cdot8=16y Así que podemos presentar la expresión en el lado izquierdo de la ecuación dada como una diferencia de dos cuadrados:

y22y8+82=0(y8)2=0 \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 A partir de aquí podemos sacar raíces cuadradas para los dos lados de la ecuación (recuerda que hay dos posibilidades - positiva y negativa al sacar raíces cuadradas), lo resolveremos fácilmente aislando la variable en un lado:

(y8)2=0/y8=±0y8=0y=8 (y-8)^2=0\hspace{8pt}\text{/}\sqrt{\hspace{6pt}}\\ y-8=\pm0\\ y-8=0\\ \boxed{y=8}

Resumamos entonces la solución de la ecuación:

6016y+y2=4y216y+64=0y22y8+82=0(y8)2=0y8=0y=8 60-16y+y^2=-4 \\ y^2-16y+64=0 \\ \downarrow\\ \textcolor{red}{y}^2-2\cdot\textcolor{red}{y}\cdot\textcolor{blue}{8}+\textcolor{blue}{8}^2=0 \\ \downarrow\\ (\textcolor{red}{y}-\textcolor{blue}{8})^2=0 \\ \downarrow\\ y-8=0\\ \downarrow\\ \boxed{y=8}

Así que la respuesta correcta es la opción a.

Respuesta

y=8 y=8

Ejercicio #2

x2+144=24x x^2+144=24x

Solución en video

Respuesta

x=12 x=12

Ejercicio #3

x2=6x9 x^2=6x-9

Solución en video

Respuesta

x=3 x=3

Ejercicio #4

(x4)2x(x+8)=0 (x-4)^2-x(x+8)=0

Solución en video

Respuesta

x=1 x=1

Ejercicio #5

(x4)2x(x+8)=16 (x-4)^2-x(x+8)=16

Solución en video

Respuesta

x=0 x=0

Ejercicio #6

(x1)2(x+2)2=15 (x-1)^2-(x+2)^2=15

Solución en video

Respuesta

x=3 x=-3

Ejercicio #7

x2+(x2)2=2(x+1)2 x^2+(x-2)^2=2(x+1)^2

Solución en video

Respuesta

x=14 x=\frac{1}{4}

Ejercicio #8

(x4)2=(x+2)(x1) (x-4)^2=(x+2)(x-1)

Solución en video

Respuesta

x=2 x=2

Ejercicio #9

Resuelva la siguiente ecuación:

1(x2)2+1x2=1 \frac{1}{(x-2)^2}+\frac{1}{x-2}=1

Solución en video

Respuesta

12[5±5] \frac{1}{2}[5\pm\sqrt{5}]

Ejercicio #10

Resuelva la siguiente ecuación:

x3+1(x1)2=x+4 \frac{x^3+1}{(x-1)^2}=x+4

Solución en video

Respuesta

x=3,12 x=3,\frac{1}{2}

Ejercicio #11

(1x12)2(1x13)2=94 \frac{(\frac{1}{x}-\frac{1}{2})^2}{(\frac{1}{x}-\frac{1}{3})^2}=\frac{9}{4}

Encuentra a X

Solución en video

Respuesta

2.5

Ejercicio #12

Resuelve el sistema de ecuaciones siguiente:

{xy=616xy=9 \begin{cases} \sqrt{x}-\sqrt{y}=\sqrt{\sqrt{61}-6} \\ xy=9 \end{cases}

Solución en video

Respuesta

x=6122.5 x=\frac{\sqrt{61}}{2}-2.5

y=612+2.5 y=\frac{\sqrt{61}}{2}+2.5

o

x=612+2.5 x=\frac{\sqrt{61}}{2}+2.5

y=6122.5 y=\frac{\sqrt{61}}{2}-2.5

Ejercicio #13

Resuelva la siguiente ecuación:

(2x1)2x2+(x2)22x1=4.5x \frac{(2x-1)^2}{x-2}+\frac{(x-2)^2}{2x-1}=4.5x

Solución en video

Respuesta

1±3 -1\pm\sqrt{3}