\( \sqrt{(x-3)(x+3)}\cdot\sqrt{(x+3)(x-3)}=5 \)
\( \pm\sqrt{2} \)
\( 2 \)
Resuelve:
\( (\sqrt{7}-\sqrt{x})(\sqrt{x}+\sqrt{7})=5x+42-3x-4\cdot7 \)
\( \frac{13}{8} \)
\( 1 \)
\( (\sqrt{x}+\sqrt{3})(\sqrt{x}-\sqrt{3})+\sqrt{9x^2}=0 \)
\( 3 \)
\( \)\( \frac{3}{2} \)
(x−3)(x+3)⋅(x+3)(x−3)=5 \sqrt{(x-3)(x+3)}\cdot\sqrt{(x+3)(x-3)}=5 (x−3)(x+3)⋅(x+3)(x−3)=5
2 2 2
(7−x)(x+7)=5x+42−3x−4⋅7 (\sqrt{7}-\sqrt{x})(\sqrt{x}+\sqrt{7})=5x+42-3x-4\cdot7 (7−x)(x+7)=5x+42−3x−4⋅7
1 1 1
(x+3)(x−3)+9x2=0 (\sqrt{x}+\sqrt{3})(\sqrt{x}-\sqrt{3})+\sqrt{9x^2}=0 (x+3)(x−3)+9x2=0
32 \frac{3}{2} 23