((10×3)−4)7= \left(\left(10\times3\right)^{-4}\right)^7= ((10×3)−4)7=
(10×3)3 \left(10\times3\right)^3 (10×3)3
(10×3)−28 \left(10\times3\right)^{-28} (10×3)−28
((2×4)−2)4= \left(\left(2\times4\right)^{-2}\right)^4= ((2×4)−2)4=
(2×4)−2×4 \left(2\times4\right)^{-2\times4} (2×4)−2×4
(2×4)−2+4 \left(2\times4\right)^{-2+4} (2×4)−2+4
((3×5)−3)−6= \left(\left(3\times5\right)^{-3}\right)^{-6}= ((3×5)−3)−6=
(3×5)−3−6 \left(3\times5\right)^{-3-6} (3×5)−3−6
(3×5)−3×−6 \left(3\times5\right)^{-3\times-6} (3×5)−3×−6
((4×8)−5)4= \left(\left(4\times8\right)^{-5}\right)^4= ((4×8)−5)4=
(4×8)−9 \left(4\times8\right)^{-9} (4×8)−9
(4×8)−20 \left(4\times8\right)^{-20} (4×8)−20
((6×2)4)−5= \left(\left(6\times2\right)^4\right)^{-5}= ((6×2)4)−5=
(6×2)4−5 \left(6\times2\right)^{4-5} (6×2)4−5
(6×2)4×−5 \left(6\times2\right)^{4\times-5} (6×2)4×−5
((6×5)−8)−4= \left(\left(6\times5\right)^{-8}\right)^{-4}= ((6×5)−8)−4=
(6×5)−32 \left(6\times5\right)^{-32} (6×5)−32
(6×5)32 \left(6\times5\right)^{32} (6×5)32
((7×2)3)−2= \left(\left(7\times2\right)^3\right)^{-2}= ((7×2)3)−2=
(7×2)−6 \left(7\times2\right)^{-6} (7×2)−6
(7×2)−23 \left(7\times2\right)^{\frac{-2}{3}} (7×2)3−2
((7×4)−6)5= \left(\left(7\times4\right)^{-6}\right)^5= ((7×4)−6)5=
(7×4)−6×5 \left(7\times4\right)^{-6\times5} (7×4)−6×5
(7×4)−6−5 \left(7\times4\right)^{-6-5} (7×4)−6−5
((8×6)−7)−8= \left(\left(8\times6\right)^{-7}\right)^{-8}= ((8×6)−7)−8=
(8×6)−7×−8 \left(8\times6\right)^{-7\times-8} (8×6)−7×−8
(8×6)−7−8 \left(8\times6\right)^{-7-8} (8×6)−7−8
((9×3)−4)−6= \left(\left(9\times3\right)^{-4}\right)^{-6}= ((9×3)−4)−6=
(9×3)−10 \left(9\times3\right)^{-10} (9×3)−10
(9×3)24 \left(9\times3\right)^{24} (9×3)24
((3×9)8)−5= \left(\left(3\times9\right)^8\right)^{-5}= ((3×9)8)−5=
(3×9)40 \left(3\times9\right)^{40} (3×9)40
1(3×9)40 \frac{1}{\left(3\times9\right)^{40}} (3×9)401
((4×2)−2)7= \left(\left(4\times2\right)^{-2}\right)^7= ((4×2)−2)7=
1(4×2)14 \frac{1}{\left(4\times2\right)^{14}} (4×2)141
1(4×2)−14 \frac{1}{\left(4\times2\right)^{-14}} (4×2)−141
((5×3)4)−3= \left(\left(5\times3\right)^4\right)^{-3}= ((5×3)4)−3=
(5×3)12 \left(5\times3\right)^{12} (5×3)12
1(5×3)12 \frac{1}{\left(5\times3\right)^{12}} (5×3)121
((7×6)−5)3= \left(\left(7\times6\right)^{-5}\right)^3= ((7×6)−5)3=
1(7×6)15 \frac{1}{\left(7\times6\right)^{15}} (7×6)151
1(7×6)−2 \frac{1}{\left(7\times6\right)^{-2}} (7×6)−21
((8×4)−7)6= \left(\left(8\times4\right)^{-7}\right)^6= ((8×4)−7)6=
1(8×4)−42 \frac{1}{\left(8\times4\right)^{-42}} (8×4)−421
1(8×4)42 \frac{1}{\left(8\times4\right)^{42}} (8×4)421