\( \left(\left(5\times3\right)^4\right)^{-3}= \)
\( \frac{1}{\left(5\times3\right)^{12}} \)
\( \left(5\times3\right)^{12} \)
\( \left(\left(7\times6\right)^{-5}\right)^3= \)
\( \frac{1}{\left(7\times6\right)^{15}} \)
\( \frac{1}{\left(7\times6\right)^{-2}} \)
\( \left(\left(8\times4\right)^{-7}\right)^6= \)
\( \frac{1}{\left(8\times4\right)^{-42}} \)
\( \frac{1}{\left(8\times4\right)^{42}} \)
((5×3)4)−3= \left(\left(5\times3\right)^4\right)^{-3}= ((5×3)4)−3=
1(5×3)12 \frac{1}{\left(5\times3\right)^{12}} (5×3)121
((7×6)−5)3= \left(\left(7\times6\right)^{-5}\right)^3= ((7×6)−5)3=
1(7×6)15 \frac{1}{\left(7\times6\right)^{15}} (7×6)151
((8×4)−7)6= \left(\left(8\times4\right)^{-7}\right)^6= ((8×4)−7)6=
1(8×4)42 \frac{1}{\left(8\times4\right)^{42}} (8×4)421