Resolución con el método de sustitución para sistemas de dos ecuaciones lineales con dos incógnitas - Ejemplos, Ejercicios y Soluciones

Para resolver con el método de sustitución un sistema de dos ecuaciones lineales con dos incógnitas deberemos llegar a sustituir una de las incógnitas en alguna ecuación y obtener así una ecuación con una sola incógnita.

¿Cómo lo haremos?

  • Elige la ecuación en la que puedas aislar fácilmente una de las incógnitas. (Aíslala de tal modo que no pueda expresarse por sí misma).
  • Coloca la incógnita que has aislado en la segunda ecuación del sistema: tendrás una ecuación con una incógnita y descubrirás el valor de la primera.
  • Regresa al sistema de ecuaciones y coloca el valor de la incógnita que encontraste en una de las ecuaciones o en la ecuación obtenida para descubrir la segunda incógnita.

Temas sugeridos para practicar con anticipación

  1. Ecuación lineal con dos incógnitas

Practicar Resolución con el método de sustitución para sistemas de dos ecuaciones lineales con dos incógnitas

ejemplos con soluciones para Resolución con el método de sustitución para sistemas de dos ecuaciones lineales con dos incógnitas

Ejercicio #1

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

{xy=52x3y=8 \begin{cases} x-y=5 \\ 2x-3y=8 \end{cases}

Solución en video

Respuesta

x=2,y=3 x=2,y=-3

Ejercicio #2

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

(I)2x+3y=4 (I)-2x+3y=4

(II)x4y=8 (II)x-4y=8

Solución en video

Respuesta

x=8,y=4 x=-8,y=-4

Ejercicio #3

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

(I)5x+4y=3 (I)-5x+4y=3

(II)6x8y=10 (II)6x-8y=10

Solución en video

Respuesta

x=4,y=414 x=-4,y=-4\frac{1}{4}

Ejercicio #4

Resuelva la siguiente ecuación:

(I)2x+y=9 (I)2x+y=9

(II)x=5 (II)x=5

Solución en video

Respuesta

x=5,y=1 x=5,y=-1

Ejercicio #5

Resuelva la siguiente ecuación:

(I)x+y=18 (I)x+y=18

(II)y=13 (II)y=13

Solución en video

Respuesta

x=5,y=13 x=5,y=13

Ejercicio #6

Halla el valor de x y y mediante el método de sustitución.

(I)x2y=4 (I)-x-2y=4

(II)3x+y=8 (II)3x+y=8

Solución en video

Respuesta

x=4,y=4 x=4,y=-4

Ejercicio #7

Halla el valor de x y y mediante el método de sustitución.

(I)x+y=5 (I)x+y=5

(II)2x3y=15 (II)2x-3y=-15

Solución en video

Respuesta

x=0,y=5 x=0,y=5

Ejercicio #8

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

{8x+5y=310x+y=16 \begin{cases} -8x+5y=3 \\ 10x+y=16 \end{cases}

Solución en video

Respuesta

x=1.32,y=2.8 x=1.32,y=2.8

Ejercicio #9

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

(I)7x4y=8 (I)7x-4y=8

(II)x+5y=12.8 (II)x+5y=12.8

Solución en video

Respuesta

x=2.33,y=2.09 x=2.33,y=2.09

Ejercicio #10

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

(I)8x+3y=7 (I)-8x+3y=7

(II)24x+y=3 (II)24x+y=3

Solución en video

Respuesta

x=0.025,y=2.4 x=0.025,y=2.4

Ejercicio #11

Halla el valor de x y y mediante el método de sustitución.

(I)5x+9y=18 (I)-5x+9y=18

(II)x+8y=16 (II)x+8y=16

Solución en video

Respuesta

x=0,y=2 x=0,y=2

Ejercicio #12

Halla el valor de x y y mediante el método de sustitución.

(I)x+3y=12 (I)-x+3y=12

(II)4x+2y=10 (II)4x+2y=10

Solución en video

Respuesta

x=37,y=297 x=\frac{3}{7},y=\frac{29}{7}

Ejercicio #13

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

{2x15y=183x+y=6 \begin{cases} 2x-\frac{1}{5}y=18 \\ 3x+y=6 \end{cases}

Solución en video

Respuesta

x=7.38,y=16.14 x=7.38,y=-16.14

Ejercicio #14

Resuelva el conjunto de ecuaciones anterior y elija la respuesta correcta.

(I)13x4y=5 (I)\frac{1}{3}x-4y=5

(II)x+6y=9 (II)x+6y=9

Solución en video

Respuesta

x=11,y=13 x=11,y=-\frac{1}{3}

Ejercicio #15

Elija la respuesta correcta para el siguiente ejercicio:

(I)x+y=15 (I)x+y=15

(II)2x+2y=12 (II)2x+2y=12\frac{}{}

Solución en video

Respuesta

No hay solución