De manera general, esta operación puede expresarse mediante la siguiente fórmula

a:(b×c)=a:b:c a:(b\times c)=a:b:c

Otra manera de resolver este ejercicio es aplicar el orden de las operaciones matemáticas, es decir:

24:(6×2)= 24:\left(6\times2\right)=

Empezaremos resolviendo la expresión entre paréntesis en el orden de las operaciones matemáticas y obtendremos:

24:12=2 24:12=2

Una manera de resolver este ejercicio será abrir los paréntesis. Para ello, debemos recordar la regla que establece que, tras abrir los paréntesis, deberemos dividir el número entero entre cada uno de los elementos de la multiplicación.

Es decir, en nuestro ejemplo:

24:(6×2)= 24:(6\times2)=

24:6:2=24 : 6 : 2 =

4:2=24 : 2 = 2

24  (6×2) =

Temas sugeridos para practicar con anticipación

  1. La propiedad conmutativa
  2. Propiedad conmutativa de la suma
  3. Propiedad conmutativa de la multiplicación
  4. Propiedad distributiva
  5. La propiedad distributiva para alumnos de 1.º de ESO
  6. La propiedad distributiva en el caso de las divisiones
  7. La propiedad distributiva en el caso de la multiplicación
  8. Las propiedades conmutativas, la multiplicación, la propiedad distributiva y ¡otras más!
  9. La propiedad asociativa
  10. Propiedad asociativa de la suma
  11. Propiedad asociativa de la multiplicación

Practicar División de números enteros entre paréntesis en los que hay una multiplicación

ejemplos con soluciones para División de números enteros entre paréntesis en los que hay una multiplicación

Ejercicio #1

100(3021)= 100-(30-21)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

3021=9 30-21=9

Ahora obtenemos:

1009=91 100-9=91

Respuesta

91 91

Ejercicio #2

12:(2×2)= 12:(2\times2)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

2×2=4 2\times2=4

Ahora dividimos:

12:4=3 12:4=3

Respuesta

3 3

Ejercicio #3

13(7+4)= 13-(7+4)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

7+4=11 7+4=11

Ahora restamos:

1311=2 13-11=2

Respuesta

2 2

Ejercicio #4

22(283)= 22-(28-3)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

283=25 28-3=25

Ahora obtenemos el ejercicio:

2225=3 22-25=-3

Respuesta

3 -3

Ejercicio #5

28(4+9)= 28-(4+9)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

4+9=13 4+9=13

Ahora obtenemos el ejercicio:

2813=15 28-13=15

Respuesta

15 15

Ejercicio #6

37(47)= 37-(4-7)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

47=3 4-7=-3

Ahora obtenemos:

37(3)= 37-(-3)=

Recuerda que el producto entre menos y menos da un resultado positivo, por lo tanto:

(3)=+3 -(-3)=+3

Ahora obtenemos:

37+3=40 37+3=40

Respuesta

40 40

Ejercicio #7

38(18+20)= 38-(18+20)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

18+20=38 18+20=38

Ahora, el ejercicio que se obtiene es:

3838=0 38-38=0

Respuesta

0 0

Ejercicio #8

55(8+21)= 55-(8+21)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

8+21=29 8+21=29

Ahora obtenemos el ejercicio:

5529=26 55-29=26

Respuesta

26 26

Ejercicio #9

60:(10×2)= 60:(10\times2)=

Solución en video

Solución Paso a Paso

Escribimos el ejercicio en forma de fracción:

6010×2= \frac{60}{10\times2}=

Descomponemos el numerador en un ejercicio de multiplicación:

10×610×2= \frac{10\times6}{10\times2}=

Simplificamos el 10 en el numerador y denominador, obteniendo:

62=3 \frac{6}{2}=3

Respuesta

3 3

Ejercicio #10

60:(5×3)= 60:(5\times3)=

Solución en video

Solución Paso a Paso

Escribimos el ejercicio en manera de fracción:

605×3 \frac{60}{5\times3}

Descomponemos al 60 en un ejercicio de multiplicación:

20×35×3= \frac{20\times3}{5\times3}=

Simplificamos los 3 y obtenemos:

205 \frac{20}{5}

Descomponemos al 5 en un ejercicio de multiplicación:

5×45= \frac{5\times4}{5}=

Simplificamos al 5 y obtenemos:

41=4 \frac{4}{1}=4

Respuesta

4 4

Ejercicio #11

7(4+2)= 7-(4+2)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

4+2=6 4+2=6

Ahora resolvemos el resto del ejercicio:

76=1 7-6=1

Respuesta

1 1

Ejercicio #12

80(412)= 80-(4-12)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

412=8 4-12=-8

Ahora obtenemos el ejercicio:

80(8)= 80-(-8)=

Recuerda que el producto entre más y más da un resultado positivo:

(8)=+8 -(-8)=+8

Ahora obtenemos:

80+8=88 80+8=88

Respuesta

88 88

Ejercicio #13

8(2+1)= 8-(2+1)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

2+1=3 2+1=3

Ahora resolvemos el resto del ejercicio:

83=5 8-3=5

Respuesta

5 5

Ejercicio #14

33(173)= -33-(17-3)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

173=14 17-3=14

Ahora obtenemos el ejercicio:

3314=47 -33-14=-47

Respuesta

47 -47

Ejercicio #15

35:(2×7)= 35:(2\times7)=

Solución en video

Solución Paso a Paso

Escribimos el ejercicio en forma de fracción:

352×7= \frac{35}{2\times7}=

Separemos el numerador en un ejercicio de multiplicación:

7×52×7= \frac{7\times5}{2\times7}=

Simplificamos el 7 en el numerador y denominador, obteniendo:

52=212 \frac{5}{2}=2\frac{1}{2}

Respuesta

212 2\frac{1}{2}