Propiedades conmutativa, distributiva y asociativa - Ejemplos, Ejercicios y Soluciones

Las propiedades conmutativas, la multiplicación, la propiedad distributiva y ¡otras más!

En este artículo resumiremos todas las reglas básicas de las matemáticas que te acompañarán en todo ejercicio - la propiedad conmutativa de la suma, la propiedad conmutativa de la multiplicación, la propiedad distributiva y ¡todas las demás!
¿Comenzamos?

Propiedad conmutativa

Se puede encontrar la propiedad conmutativa en dos casos, con la suma y con la multiplicación.
Puedes leer rasgos generales de la propiedad conmutativa en este enlace.

Propiedad conmutativa de la suma

Gracias a ella podemos cambiar el lugar de los sumandos sin alterar el resultado.
La propiedad es válida también en expresiones algebraicas.

Regla:
a+b=b+aa+b=b+a

x\cdotnúmero~algún=número~algún\cdot x

Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la suma.


Propiedad conmutativa de la multiplicación

Gracias a ella podemos cambiar el lugar de los factores sin alterar el producto.
La propiedad es válida también en expresiones algebraicas.
Regla:
a×b=b×aa \times b=b \times a

x\cdotnúmero~algún=número~algún\cdot x
Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la multiplicación.

Propiedad distributiva

Del mismo modo, también se puede encontrar la propiedad conmutativa en dos casos, con la división y con la multiplicación.
Puedes leer rasgos generales de la propiedad distributiva en este enlace.


Propiedad distributiva de la multiplicación

Nos permite distribuir - separa un ejercicio con varios números y operaciones de multiplicación en otro más sencillo que tenga números y operaciones de suma o resta sin que cambie el resultado.
La propiedad es válida también en expresiones algebraicas.

La regla básica:

a(b+c)=ab+aca(b+c)=ab+ac

Multiplicar el número que se encuentra fuera de los paréntesis por el primer número dentro de los paréntesis y, a este producto sumarle o restarle -según el signo del ejercicio- el producto del número de afuera de los paréntesis con el segundo dentro de los paréntesis.

Además
La propiedad distributiva nos permite hacer pequeños cambios en los números del ejercicio para y redondearlos lo más posible y, de este modo, el ejercicio resulta más fácil.
Por ejemplo:
En el ejercicio: 508×4= 508 \times 4= 
Podemos cambiar el número 508508   por la expresión (500+8)(500+8)
y volver a escribir el ejercicio:
(500+8)×4=(500+8) \times 4=
Luego continuar con la propiedad distributiva:
500×4+8×4=500 \times 4+8 \times 4=
2000+32=20322000+32=2032

Puedes leer sobre la propiedad distributiva de la multiplicación en este enlace.


La regla extendida

(a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d)=ac+ad+bc+bd

Elegiremos la expresión que se encuentra entre los paréntesis - tomaremos un elemento por vez y lo multiplicaremos siguiendo el orden dado, por cada uno de los elementos que hay en la segunda expresión manteniendo los signos de restar y de sumar.
Luego haremos lo mismo con el segundo elemento de la expresión elegida.

Puedes leer sobre la propiedad distributiva extendida aquí mismo.


Propiedad distributiva de la división

Gracias a ella podemos redondear el número que queremos dividir, siempre tomando en cuenta que el número que hemos redondeado realmente pueda dividirse por el otro.
Esto se hace sin afectar el número original para poder conservar su valor.

Por ejemplo:
76:4=76:4=
Redondearemos hacia arriba el número 7676 al 8080. Para conservar el valor de 7676 escribiremos 80480-4
Obtendremos:
(804):4=(80-4):4=
Dividiremos 8080 por 44 y le restaremos el cociente de 44 dividido 44
Obtendremos:
80:44:4=80:4-4:4=
201=1920-1=19

Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la división.


Practicar Propiedades conmutativa, distributiva y asociativa

ejemplos con soluciones para Propiedades conmutativa, distributiva y asociativa

Ejercicio #1

3×5×4= 3\times5\times4=

Solución en video

Solución Paso a Paso

A nivel principal, según el orden de las operaciones aritméticas, debemos resolver el ejercicio de izquierda a derecha,

Pero este cálculo puede dejarnos con números incómodos o complicados de calcular.

Dado que todo el ejercicio es una multiplicación, puedes usar la propiedad asociativa para resolver el ejercicio de manera diferente:

3*5*4=

En realidad comenzamos calculando el segundo ejercicio, por lo que lo marcaremos entre paréntesis:

3*(5*4)=

3*(20)=

Ahora, podemos resolver el resto del ejercicio fácilmente:

3*20=60

Respuesta

60

Ejercicio #2

5+2a+4= 5+2a+4=

Solución en video

Solución Paso a Paso

Dado que en el ejercicio sólo existe una operación de suma, se puede utilizar la propiedad sustitutiva:

5+4+2a= 5+4+2a=

Resolvemos el ejercicio de izquierda a derecha:

5+4=9 5+4=9

Ahora obtenemos:

2a+9 2a+9

Respuesta

2a+9 2a+9

Ejercicio #3

42+24= 4-2+2-4=

Solución en video

Solución Paso a Paso

Dado que nos referimos a ejercicios de suma y resta, resolvemos el ejercicio de izquierda a derecha:

42=2 4-2=2

2+2=4 2+2=4

44=0 4-4=0

Respuesta

0 0

Ejercicio #4

10523= 10-5-2-3=

Solución en video

Solución Paso a Paso

Dado que todo el ejercicio es una resta, resolvemos el ejercicio de izquierda a derecha:

105=5 10-5=5

52=3 5-2=3

33=0 3-3=0

Respuesta

0 0

Ejercicio #5

12×5×6= 12\times5\times6=

Solución en video

Solución Paso a Paso

De acuerdo a las reglas del orden de las operaciones aritméticas, resolvemos el ejercicio de izquierda a derecha:

12×5=60 12\times5=60

60×6=360 60\times6=360

Respuesta

360

Ejercicio #6

12×13+14= 12\times13+14=

Solución en video

Solución Paso a Paso

De acuerdo al orden de las operaciones aritméticas, comenzamos desde el ejercicio de multiplicación y luego con la suma.

12×13=156 12\times13=156

Ahora obtenemos el ejercicio:

156+14=170 156+14=170

Respuesta

170 170

Ejercicio #7

6:2+94= 6:2+9-4=

Solución en video

Solución Paso a Paso

De acuerdo al orden de las operaciones aritméticas, primero resolvemos el ejercicio de división, y luego el de resta:

(6:2)+94= (6:2)+9-4=

6:2=3 6:2=3

Ahora colocamos entre paréntesis el ejercicio de resta:

3+(94)= 3+(9-4)=

3+5=8 3+5=8

Respuesta

8 8

Ejercicio #8

4:2+2= 4:2+2=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio de división:

4:2=2 4:2=2

Ahora obtenemos el ejercicio:

2+2=4 2+2=4

Respuesta

4 4

Ejercicio #9

14×4+2= \frac{1}{4}\times4+2=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio de multiplicación:

Agregamos el 4 en el numerador de la fracción:

1×44+2= \frac{1\times4}{4}+2=

Resolvemos el ejercicio en el numerador de la fracción y obtenemos:

44+2=1+2=3 \frac{4}{4}+2=1+2=3

Respuesta

3 3

Ejercicio #10

38(18+20)= 38-(18+20)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

18+20=38 18+20=38

Ahora, el ejercicio que se obtiene es:

3838=0 38-38=0

Respuesta

0 0

Ejercicio #11

8(2+1)= 8-(2+1)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

2+1=3 2+1=3

Ahora resolvemos el resto del ejercicio:

83=5 8-3=5

Respuesta

5 5

Ejercicio #12

22(283)= 22-(28-3)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

283=25 28-3=25

Ahora obtenemos el ejercicio:

2225=3 22-25=-3

Respuesta

3 -3

Ejercicio #13

12:(2×2)= 12:(2\times2)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

2×2=4 2\times2=4

Ahora dividimos:

12:4=3 12:4=3

Respuesta

3 3

Ejercicio #14

100(3021)= 100-(30-21)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

3021=9 30-21=9

Ahora obtenemos:

1009=91 100-9=91

Respuesta

91 91

Ejercicio #15

80(412)= 80-(4-12)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

412=8 4-12=-8

Ahora obtenemos el ejercicio:

80(8)= 80-(-8)=

Recuerda que el producto entre más y más da un resultado positivo:

(8)=+8 -(-8)=+8

Ahora obtenemos:

80+8=88 80+8=88

Respuesta

88 88