Propiedades conmutativa, distributiva y asociativa - Ejemplos, Ejercicios y Soluciones

Las propiedades conmutativas, la multiplicación, la propiedad distributiva y ¡otras más!

En este artículo resumiremos todas las reglas básicas de las matemáticas que te acompañarán en todo ejercicio - la propiedad conmutativa de la suma, la propiedad conmutativa de la multiplicación, la propiedad distributiva y ¡todas las demás!
¿Comenzamos?

Propiedad conmutativa

Se puede encontrar la propiedad conmutativa en dos casos, con la suma y con la multiplicación.
Puedes leer rasgos generales de la propiedad conmutativa en este enlace.

Propiedad conmutativa de la suma

Gracias a ella podemos cambiar el lugar de los sumandos sin alterar el resultado.
La propiedad es válida también en expresiones algebraicas.

Regla:
a+b=b+aa+b=b+a

x\cdotnúmero~algún=número~algún\cdot x

Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la suma.


Propiedad conmutativa de la multiplicación

Gracias a ella podemos cambiar el lugar de los factores sin alterar el producto.
La propiedad es válida también en expresiones algebraicas.
Regla:
a×b=b×aa \times b=b \times a

x\cdotnúmero~algún=número~algún\cdot x
Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la multiplicación.

Propiedad distributiva

Del mismo modo, también se puede encontrar la propiedad conmutativa en dos casos, con la división y con la multiplicación.
Puedes leer rasgos generales de la propiedad distributiva en este enlace.


Propiedad distributiva de la multiplicación

Nos permite distribuir - separa un ejercicio con varios números y operaciones de multiplicación en otro más sencillo que tenga números y operaciones de suma o resta sin que cambie el resultado.
La propiedad es válida también en expresiones algebraicas.

La regla básica:

a(b+c)=ab+aca(b+c)=ab+ac

Multiplicar el número que se encuentra fuera de los paréntesis por el primer número dentro de los paréntesis y, a este producto sumarle o restarle -según el signo del ejercicio- el producto del número de afuera de los paréntesis con el segundo dentro de los paréntesis.

Además
La propiedad distributiva nos permite hacer pequeños cambios en los números del ejercicio para y redondearlos lo más posible y, de este modo, el ejercicio resulta más fácil.
Por ejemplo:
En el ejercicio: 508×4= 508 \times 4= 
Podemos cambiar el número 508508   por la expresión (500+8)(500+8)
y volver a escribir el ejercicio:
(500+8)×4=(500+8) \times 4=
Luego continuar con la propiedad distributiva:
500×4+8×4=500 \times 4+8 \times 4=
2000+32=20322000+32=2032

Puedes leer sobre la propiedad distributiva de la multiplicación en este enlace.


La regla extendida

(a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d)=ac+ad+bc+bd

Elegiremos la expresión que se encuentra entre los paréntesis - tomaremos un elemento por vez y lo multiplicaremos siguiendo el orden dado, por cada uno de los elementos que hay en la segunda expresión manteniendo los signos de restar y de sumar.
Luego haremos lo mismo con el segundo elemento de la expresión elegida.

Puedes leer sobre la propiedad distributiva extendida aquí mismo.


Propiedad distributiva de la división

Gracias a ella podemos redondear el número que queremos dividir, siempre tomando en cuenta que el número que hemos redondeado realmente pueda dividirse por el otro.
Esto se hace sin afectar el número original para poder conservar su valor.

Por ejemplo:
76:4=76:4=
Redondearemos hacia arriba el número 7676 al 8080. Para conservar el valor de 7676 escribiremos 80480-4
Obtendremos:
(804):4=(80-4):4=
Dividiremos 8080 por 44 y le restaremos el cociente de 44 dividido 44
Obtendremos:
80:44:4=80:4-4:4=
201=1920-1=19

Pulsa aquí para ver una explicación más detallada sobre la propiedad conmutativa de la división.


Practicar Propiedades conmutativa, distributiva y asociativa

ejemplos con soluciones para Propiedades conmutativa, distributiva y asociativa

Ejercicio #1

Resuelva el ejercicio

23+1 2-3+1

Solución en video

Solución Paso a Paso

Utilizamos la propiedad sustitutiva y agregamos paréntesis para la operación de suma:

(2+1)3= (2+1)-3=

Ahora, resolvemos el ejercicio de acuerdo al orden de operaciones aritméticas:

2+1=3 2+1=3

33=0 3-3=0

Respuesta

0

Ejercicio #2

Resuelva el ejercicio

34+2+1 3-4+2+1

Solución en video

Solución Paso a Paso

Usaremos la propiedad sustitutiva para ordenar un poco más cómodamente el ejercicio, añadiremos paréntesis a la operación de suma:
(3+2+1)4= (3+2+1)-4=
Resolvemos primero la suma, de izquierda a derecha:
3+2=5 3+2=5

5+1=6 5+1=6
Y por último, restamos:

64=2 6-4=2

Respuesta

2

Ejercicio #3

Resuelva el ejercicio

5+4+13 -5+4+1-3

Solución en video

Solución Paso a Paso

De acuerdo con el orden de las operaciones aritméticas, la suma y la resta están en un mismo nivel y, por lo tanto, deben resolverse de izquierda a derecha.

Sin embargo, en el ejercicio podemos utilizar la propiedad sustitutiva para facilitar la solución.

-5+4+1-3

4+1-5-3

5-5-3

0-3

-3

Respuesta

3 -3

Ejercicio #4

Resuelve el ejercicio:

84:4=

Solución en video

Solución Paso a Paso

Hay varias formas de resolver el ejercicio,

Presentaremos dos de ellas.

En ambas formas, en el primer paso descomponemos el número 84 en 80 y 4.

44=1 \frac{4}{4}=1

Y así nos quedamos solo con los 80.

 

De la primera forma, descompondremos 80 en10×8 10\times8

Sabemos que:84=2 \frac{8}{4}=2

Y por lo tanto, reducimos el ejercicio 104×8 \frac{10}{4}\times8

De hecho, nos quedaremos con2×10 2\times10

que es igual a 20

En la segunda forma, descomponemos 80 en40+40 40+40

Sabemos que: 404=10 \frac{40}{4}=10

Y por lo tanto: 40+404=804=20=10+10 \frac{40+40}{4}=\frac{80}{4}=20=10+10

que es también igual a 20

Ahora, recordemos el 1 del primer paso y sumémoslos:

20+1=21 20+1=21

Y así logramos descomponer que:844=21 \frac{84}{4}=21

Respuesta

21

Ejercicio #5

100(3021)= 100-(30-21)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

3021=9 30-21=9

Ahora obtenemos:

1009=91 100-9=91

Respuesta

91 91

Ejercicio #6

11×3+7= 11\times3+7=

Solución en video

Solución Paso a Paso

En este ejercicio no es posible utilizar la propiedad sustitutiva, por lo tanto resolvemos tal cual de izquierda a derecha según el orden de las operaciones aritméticas.

Es decir, primero resolvemos el ejercicio de multiplicación y luego sumamos:

11×3=33 11\times3=33

33+7=40 33+7=40

Respuesta

40 40

Ejercicio #7

12:(2×2)= 12:(2\times2)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

2×2=4 2\times2=4

Ahora dividimos:

12:4=3 12:4=3

Respuesta

3 3

Ejercicio #8

12×13+14= 12\times13+14=

Solución en video

Solución Paso a Paso

De acuerdo al orden de las operaciones aritméticas, comenzamos desde el ejercicio de multiplicación y luego con la suma.

12×13=156 12\times13=156

Ahora obtenemos el ejercicio:

156+14=170 156+14=170

Respuesta

170 170

Ejercicio #9

12×5×6= 12\times5\times6=

Solución en video

Solución Paso a Paso

De acuerdo a las reglas del orden de las operaciones aritméticas, resolvemos el ejercicio de izquierda a derecha:

12×5=60 12\times5=60

60×6=360 60\times6=360

Respuesta

360

Ejercicio #10

13+2+8= 13+2+8=

Solución en video

Solución Paso a Paso

Usamos la propiedad conmutativa y primero resolvemos el ejercicio de suma a la derecha:

2+8=10 2+8=10

Ahora obtenemos:

13+10=23 13+10=23

Respuesta

23

Ejercicio #11

133+30= 133+30=

Solución en video

Solución Paso a Paso

Para resolver la pregunta, primero usamos la propiedad distributiva para el 133:

(100+33)+30= (100+33)+30=

Ahora usamos la propiedad distributiva para el 33:

100+30+3+30= 100+30+3+30=

Ordenamos el ejercicio de manera más cómoda:

100+30+30+3= 100+30+30+3=

Resolvemos el ejercicio del medio:

30+30=60 30+30=60

Ahora obtenemos el ejercicio:

100+60+3=163 100+60+3=163

Respuesta

163

Ejercicio #12

13(7+4)= 13-(7+4)=

Solución en video

Solución Paso a Paso

De acuerdo al orden de operaciones aritméticas, primero resolvemos el ejercicio entre paréntesis:

7+4=11 7+4=11

Ahora restamos:

1311=2 13-11=2

Respuesta

2 2

Ejercicio #13

14070= 140-70=

Solución en video

Solución Paso a Paso

Para facilitar el proceso de resolución, usamos la propiedad distributiva para el 140:

100+4070= 100+40-70=

Ahora ordenamos el ejercicio mediante la propiedad sustitutiva de una manera más conveniente:

10070+40= 100-70+40=

Resolvemos el ejercicio de izquierda a derecha:

10070=30 100-70=30

30+40=70 30+40=70

Respuesta

70

Ejercicio #14

14343= 143-43=

Solución en video

Solución Paso a Paso

Usamos la propiedad distributiva y separamos el número 143 en una suma entre 100 y 43.

La propiedad distributiva nos permite separa, es decir, dividir un número en dos o más números. En realidad, esto nos permite trabajar con números más pequeños y simplificar la operación.

(100+43)43= (100+43)-43=

Actuamos según el orden de operaciones aritméticas.

Puedes quitar los paréntesis y realizar las operaciones de suma y resta sin ningún orden en particular porque solo hay operaciones de suma y resta en la ecuación.

100+4343=100+0=100 100+43-43=100+0=100

Por lo tanto la respuesta es la opción C - 100.

Y ahora veremos la solución del ejercicio de forma centralizada:

14343=(100+43)43=100+4343=100+0=100 143-43= (100+43)-43= 100+43-43=100+0=100

Respuesta

100

Ejercicio #15

19+34+21+10+6=? 19+34+21+10+6=\text{?}

Solución en video

Solución Paso a Paso

Para facilitar la resolución intentamos sumar números que nos den un resultado redondo.

Tengamos en cuenta que:

19+21=40 19+21=40

34+6=40 34+6=40

Ahora, obtenemos un ejercicio más conveniente para resolver:

40+40+10=80+10=90 40+40+10=80+10=90

Respuesta

90