ejemplos con soluciones para Potencia de una multiplicación: Variable en la base de la potencia

Ejercicio #1

(5x3)3= (5\cdot x\cdot3)^3=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(5×x×3)3=(15x)3 (5\times x\times3)^3=(15x)^3

(15x)3=(15×x)3 (15x)^3=(15\times x)^3

153x3 15^3x^3

Respuesta

153x3 15^3\cdot x^3

Ejercicio #2

(y×x×3)5= (y\times x\times3)^5=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(y×x×3)5=y5x535 (y\times x\times3)^5=y^5x^53^5

Respuesta

y5×x5×35 y^5\times x^5\times3^5

Ejercicio #3

(x43)3= (x\cdot4\cdot3)^3=

Solución en video

Solución Paso a Paso

Utiliza la ley de potencias para una potencia que se aplica a los paréntesis en los que se multiplican los términos:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n Aplicamos la ley en el problema:

(x43)3=x34333 (x\cdot4\cdot3)^3= x^3\cdot4^3\cdot3^3 Cuando aplicamos la potencia entre paréntesis al producto de los términos a cada término del producto por separado y mantenemos el producto,

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

x34333 x^3\cdot4^3\cdot3^3

Ejercicio #4

(ab8)2= (a\cdot b\cdot8)^2=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula

(a×b)x=axbx (a\times b)^x=a^xb^x

Por lo tanto, obtenemos:

a2b282 a^2b^28^2

Respuesta

a2b282 a^2\cdot b^2\cdot8^2

Ejercicio #5

(a56y)5= (a\cdot5\cdot6\cdot y)^5=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(a×b)x=axbx (a\times b)^x=a^xb^x

Por lo tanto, obtenemos:

(a×5×6×y)5=(a×30×y)5 (a\times5\times6\times y)^5=(a\times30\times y)^5

a5305y5 a^530^5y^5

Respuesta

a5305y5 a^5\cdot30^5\cdot y^5

Ejercicio #6

(a×b×c×4)7= (a\times b\times c\times4)^7=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(a×b)x=axbx (a\times b)^x=a^xb^x

Por lo tanto, obtenemos:

a7b7c747 a^7b^7c^74^7

Respuesta

a7×b7×c7×47 a^7\times b^7\times c^7\times4^7

Ejercicio #7

(y×7×3)4= (y\times7\times3)^4=

Solución en video

Solución Paso a Paso

Utilizamos la ley de potencias para la multiplicación entre paréntesis:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n Lo aplicamos en el problema:

(y73)4=y47434 (y\cdot7\cdot3)^4=y^4\cdot7^4\cdot3^4 Por lo tanto, la respuesta correcta es la opción a.

Nota:

De la fórmula de la propiedad de potencias entre paréntesis mencionada anteriormente, se puede entender que se refiere solo a dos términos del producto entre paréntesis, pero en realidad también es válida para la potencia sobre una multiplicación de muchos términos entre paréntesis, como por ejemplo lo que se hizo en este problema y en otros problemas.

Un buen ejercicio es demostrar que si la propiedad anterior es válida para una potencia sobre un producto de dos términos entre paréntesis (como está formula anteriormente), entonces también es válida para una potencia sobre varios términos del producto entre paréntesis (por ejemplo - tres términos, etc.).

Respuesta

y4×74×34 y^4\times7^4\times3^4

Ejercicio #8

Inserta la expresión correspondiente:

(y×x)2= \left(y\times x\right)^2=

Solución en video

Respuesta

y2×x2 y^2\times x^2

Ejercicio #9

Inserta la expresión correspondiente:

(y×a)5= \left(y\times a\right)^5=

Solución en video

Respuesta

y5×a5 y^5\times a^5

Ejercicio #10

Inserta la expresión correspondiente:

(a×b)3= \left(a\times b\right)^3=

Solución en video

Respuesta

a3×b3 a^3\times b^3

Ejercicio #11

Inserta la expresión correspondiente:

(5×b×a)4= \left(5\times b\times a\right)^4=

Solución en video

Respuesta

54×b4×a4 5^4\times b^4\times a^4

Ejercicio #12

Inserta la expresión correspondiente:

(b×9×a)6= \left(b\times9\times a\right)^6=

Solución en video

Respuesta

b6×96×a6 b^6\times9^6\times a^6

Ejercicio #13

Inserta la expresión correspondiente:

(c×b×a)2= \left(c\times b\times a\right)^2=

Solución en video

Respuesta

a'+b' son correctos

Ejercicio #14

Inserta la expresión correspondiente:

(b×z×a)5= \left(b\times z\times a\right)^5=

Solución en video

Respuesta

a5×b5×z5 a^5\times b^5\times z^5

Ejercicio #15

Inserta la expresión correspondiente:

(2×x)2= \left(2\times x\right)^2=

Solución en video

Respuesta

22×x2 2^2\times x^2

Ejercicio #16

Inserta la siguiente expresión:

(y×3)2= \left(y\times3\right)^2=

Solución en video

Respuesta

y2×32 y^2\times3^2

Ejercicio #17

Inserta la expresión correspondiente:

(a×3)3= \left(a\times3\right)^3=

Solución en video

Respuesta

a3×33 a^3\times3^3

Ejercicio #18

Inserta la expresión correspondiente:

(6×b)4= \left(6\times b\right)^4=

Solución en video

Respuesta

64×b4 6^4\times b^4

Ejercicio #19

Inserta la expresión correspondiente:

(7×4×a)5= \left(7\times4\times a\right)^5=

Solución en video

Respuesta

75×45×a5 7^5\times4^5\times a^5

Ejercicio #20

Inserta la expresión correspondiente:

x7×97×y7= x^7\times9^7\times y^7=

Solución en video

Respuesta

(x×9×y)7 \left(x\times9\times y\right)^7