ejemplos con soluciones para Multiplicación de potencias: Resolución del problema

Ejercicio #1

3319351932193=? 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=\text{?}

Solución en video

Solución Paso a Paso

Empecemos simplificando el segundo término de la multiplicación total, es decir de la fracción, lo simplificamos en dos pasos:

En el primer paso, utilizamos la propiedad de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Simplificamos el numerador de la fracción:

19351932193=1935+(32)193=193532193=193193 \frac{19^{35}\cdot19^{-32}}{19^3}=\frac{19^{35+(-32)}}{19^3}=\frac{19^{35-32}}{19^3}=\frac{19^3}{19^3} A continuación, recordemos que dividir cada número por sí mismo dará como resultado 1, o usamos propiedad de potenciación para dividir entre términos con bases idénticas:

aman=amn \frac{a^m}{a^n}=a^{m-n} Para obtener que: 193193=1933=190=1 \frac{19^3}{19^3}=19^{3-3}=19^0=1 Cuando en el último paso utilizamos el hecho de que elevar cualquier número a la potencia de 0 dará el resultado 1, es decir, matemáticamente que:

X0=1 X^0=1 Resumiendo esta parte, obtenemos que:

19351932193=1 \frac{19^{35}\cdot19^{-32}}{19^3}=1 Ahora regresamos a la expresión completa del problema y colocamos este resultado en lugar de la fracción:

3319351932193=331=33 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=3^{-3}\cdot1=3^{-3} En el siguiente paso recordemos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} Aplicamos esta propiedad para el resultado que obtuvimos:

33=133=127 3^{-3}=\frac{1}{3^3}=\frac{1}{27} Resumiendo todos los pasos anteriores, obtenemos que:

3319351932193=33=127 3^{-3}\cdot\frac{19^{35}\cdot19^{-32}}{19^3}=3^{-3}=\frac{1}{27} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

127 \frac{1}{27}

Ejercicio #2

9380=? \frac{9\cdot3}{8^0}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la fórmula:

a0=1 a^0=1

9×380=9×31=9×3 \frac{9\times3}{8^0}=\frac{9\times3}{1}=9\times3

Sabemos que:

9=32 9=3^2

Por lo tanto, obtenemos:

32×3=32×31 3^2\times3=3^2\times3^1

Usamos la fórmula:

am×an=am+n a^m\times a^n=a^{m+n}

32×31=32+1=33 3^2\times3^1=3^{2+1}=3^3

Respuesta

33 3^3

Ejercicio #3

Resuelve el ejercicio:

Y2+Y6Y5Y= Y^2+Y^6-Y^5\cdot Y=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Lo aplicamos en el problema:

Y2+Y6Y5Y=Y2+Y6Y5+1=Y2+Y6Y6=Y2 Y^2+Y^6-Y^5\cdot Y=Y^2+Y^6-Y^{5+1}=Y^2+Y^6-Y^6=Y^2 Cuando aplicamos la propiedad anterior a la tercera expresión desde la izquierda en la suma, y ​​luego simplificamos la expresión total recopilando términos semejantes.

Por lo tanto, la respuesta correcta es la opción D.

Respuesta

Y2 Y^2

Ejercicio #4

923463=? \frac{9^2\cdot3^{-4}}{6^3}=\text{?}

Solución en video

Respuesta

63 6^{-3}

Ejercicio #5

Calcule e indique la respuesta:

(829)2:22+32 (\sqrt{8}\cdot\sqrt{2}-\sqrt{9})^2:2^2+3^2

Solución en video

Respuesta

113 \frac{1}{13}

Ejercicio #6

Marque la respuesta correcta:

35xy77xy8x5y= \frac{35x\cdot y^7}{7xy}\cdot\frac{8x}{5y}=

Solución en video

Respuesta

8xy5 8xy^5

Ejercicio #7

943813=? 9^4\cdot3^{-8}\cdot\frac{1}{3}=\text{?}

Solución en video

Respuesta

31 3^{-1}