ejemplos con soluciones para Multiplicación de potencias: Variables en el exponente de la potencia

Ejercicio #1

3x2x32x= 3^x\cdot2^x\cdot3^{2x}=

Solución en video

Solución Paso a Paso

En este caso tenemos 2 bases diferentes, por lo que sumaremos lo que se puede sumar, es decir, los exponentes de 3 3

3x2x32x=2x33x 3^x\cdot2^x\cdot3^{2x}=2^x\cdot3^{3x}

Respuesta

33x2x 3^{3x}\cdot2^x

Ejercicio #2

22x+12523x= 2^{2x+1}\cdot2^5\cdot2^{3x}=

Solución en video

Solución Paso a Paso

Como las bases son iguales, se pueden sumar los exponentes:

2x+1+5+3x=5x+6 2x+1+5+3x=5x+6

Respuesta

25x+6 2^{5x+6}

Ejercicio #3

42y454y46= 4^{2y}\cdot4^{-5}\cdot4^{-y}\cdot4^6=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos la propiedad para este problema:

42y454y46=42y+(5)+(y)+6=42y5y+6 4^{2y}\cdot4^{-5}\cdot4^{-y}\cdot4^6= 4^{2y+(-5)+(-y)+6}=4^{2y-5-y+6} Completamos la simplificación de la expresión que recibimos en el último paso:

42y5y+6=4y+1 4^{2y-5-y+6} =4^{y+1} Cuando agregamos términos similares en el exponente.

Por lo tanto, la respuesta correcta es la opción c.

Respuesta

4y+1 4^{y+1}

Ejercicio #4

72x+1717x= 7^{2x+1}\cdot7^{-1}\cdot7^x=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos la propiedad para este problema:

72x+1717x=72x+1+(1)+x=72x+11+x 7^{2x+1}\cdot7^{-1}\cdot7^x=7^{2x+1+(-1)+x}=7^{2x+1-1+x} Completamos la simplificación de la expresión que recibimos en el último paso:

72x+11+x=73x 7^{2x+1-1+x}=7^{3x} Cuando agregamos términos similares en el exponente.

Por lo tanto, la respuesta correcta es la opción d.

Respuesta

73x 7^{3x}

Ejercicio #5

7x7x=? 7^x\cdot7^{-x}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la ley de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos la ley en el problema:

7x7x=7x+(x)=7xx=70 7^x\cdot7^{-x}=7^{x+(-x)}=7^{x-x}=7^0 Cuando en la primera etapa aplicamos la mencionada ley de potenciación y en las siguientes etapas simplificamos la expresión obtenida en el exponente,

Posteriormente usamos la propiedad de potenciación del cero:

X0=1 X^0=1 Obtenemos:

70=1 7^0=1 Resumimos la solución al problema, obtuvimos que:

7x7x=7xx=70=1 7^x\cdot7^{-x}=7^{x-x}=7^0 =1 Por lo tanto, la respuesta correcta es la opción B.

Respuesta

1 1

Ejercicio #6

Resuelva el ejercicio

a3ba2b×ab= \frac{a^{3b}}{a^{2b}}\times a^b=

Solución en video

Solución Paso a Paso

Primero nos ocupamos del primer término de la multiplicación, tengamos en cuenta que los términos del numerador y del denominador tienen bases idénticas, por lo tanto usamos la propiedad de potenciación para dividir entre términos con la misma base:

aman=amn \frac{a^m}{a^n}=a^{m-n} Aplicamos el primer término de la expresión:

a3ba2bab=a3b2bab=abab \frac{a^{3b}}{a^{2b}}\cdot a^b=a^{3b-2b}\cdot a^b=a^b\cdot a^b Cuando simplificamos adicionalmente la expresión que obtuvimos como resultado de la operación de resta en el exponente del primer término,

Posteriormente, tengamos en cuenta que los dos términos de la multiplicación tienen la misma base, por lo tanto usamos la propiedad de potenciación para la multiplicación entre términos con las mismas bases:

aman=am+n a^m\cdot a^n=a^{m+n} Aplicamos esto al problema:

abab=ab+b=a2b a^b\cdot a^b=a^{b+b}=a^{2b} Por lo tanto, la respuesta correcta es la opción A.

Respuesta

a2b a^{2b}

Ejercicio #7

52x×5x= 5^{2x}\times5^x=

Solución en video

Respuesta

52x+x 5^{2x+x}

Ejercicio #8

4x×42×4a= 4^x\times4^2\times4^a=

Solución en video

Respuesta

4x+2+a 4^{x+2+a}

Ejercicio #9

5a×52a×53a= 5^a\times5^{2a}\times5^{3a}=

Solución en video

Respuesta

5a+2a+3a 5^{a+2a+3a}

Ejercicio #10

8a×82×8x= 8^a\times8^2\times8^x=

Solución en video

Respuesta

8a+2+x 8^{a+2+x}

Ejercicio #11

2a×22= 2^a\times2^2=

Solución en video

Respuesta

2a+2 2^{a+2}

Ejercicio #12

10a+b×10a+1×10b+1= 10^{a+b}\times10^{a+1}\times10^{b+1}=

Solución en video

Respuesta

102b+2a+2 10^{2b+2a+2}

Ejercicio #13

4a+b+c= 4^{a+b+c}=

Solución en video

Respuesta

4a×4b×4c 4^a\times4^b\times4^c

Ejercicio #14

g10a+5x= g^{10a+5x}=

Solución en video

Respuesta

g5a+5x×g5a g^{5a+5x}\times g^{5a}

Ejercicio #15

72x+7= 7^{2x+7}=

Solución en video

Respuesta

7x×7x+7 7^x\times7^{x+7}

Ejercicio #16

22a+a= 2^{2a+a}=

Solución en video

Respuesta

22a×2a 2^{2a}\times2^a

Ejercicio #17

32a+x+a= 3^{2a+x+a}=

Solución en video

Respuesta

32a×3x×3a 3^{2a}\times3^x\times3^a

Ejercicio #18

x3y×x5y×x4a= x^{-3y}\times x^{5y}\times x^{-4a}=

Solución en video

Respuesta

a'+b' son correctos

Ejercicio #19

a3x×ab×ab= a^{-3x}\times a^b\times a^b=

Solución en video

Respuesta

a3x+2b a^{-3x+2b}

Ejercicio #20

Resuelva el ejercicio

a2xay×a2yay= \frac{a^{2x}}{a^y}\times\frac{a^{2y}}{a^{-y}}=

Solución en video

Respuesta

a2(x+y) a^{2(x+y)}