\( a^4\times b^5\times a^5= \)
¿Cuál es la expresión simplificada?
\( a^9\times b^5 \)
\( a^5\times b^9 \)
\( a^ya^x7^yb^9a^6= \)
\( a^{y+x+6}7^yb^9 \)
\( a^{x+6}\times y \)
\( x^3\cdot y^4\cdot x^4\cdot z^6\cdot x^{3+y}= \)
\( x\cdot y\cdot z^6 \)
\( x^{10+y}\cdot y^4\cdot z^6 \)
a4×b5×a5= a^4\times b^5\times a^5= a4×b5×a5=
a9×b5 a^9\times b^5 a9×b5
ayax7yb9a6= a^ya^x7^yb^9a^6= ayax7yb9a6=
ay+x+67yb9 a^{y+x+6}7^yb^9 ay+x+67yb9
x3⋅y4⋅x4⋅z6⋅x3+y= x^3\cdot y^4\cdot x^4\cdot z^6\cdot x^{3+y}= x3⋅y4⋅x4⋅z6⋅x3+y=
x10+y⋅y4⋅z6 x^{10+y}\cdot y^4\cdot z^6 x10+y⋅y4⋅z6