Formas geométricas

Hay una amplia variedad de formas geométricas, sobre las cuales puedes leer en detalle:

Triángulo

Rectángulo

Trapezoide

Paralelogramo

cometa

Rombo

Practicar Triángulo

ejemplos con soluciones para Triángulo

Ejercicio #1

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta

Si

Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #3

Dado el rectángulo ABCD que tiene el lado AB de largo 6 cm y el lado BC de largo 4 cm.
¿Cuál es el área del rectángulo?
666444AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Recuerda que la fórmula para el área de un rectángulo es ancho por alto

 

Se nos da que la ancho del rectángulo es 6

y que el largo del rectángulo es 4

 Por lo tanto calculamos:

6*4=24

Respuesta

24 cm²

Ejercicio #4

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #5

Dado el trapecio:

999121212555AAABBBCCCDDDEEE

¿Cuál es el área?

Solución en video

Solución Paso a Paso

Fórmula del área de un trapecio:

(base+base)2×altura \frac{(base+base)}{2}\times altura

Reemplazamos los datos en la fórmula y resolvemos:

9+122×5=212×5=1052=52.5 \frac{9+12}{2}\times5=\frac{21}{2}\times5=\frac{105}{2}=52.5

Respuesta

52.5

Ejercicio #6

Dado el trapecio de la figura, ¿cuál es su perímetro?

444555999666

Solución en video

Solución Paso a Paso

Para hallar el perímetro sumaremos todos los lados:

4+5+9+6=9+9+6=18+6=24 4+5+9+6=9+9+6=18+6=24

Respuesta

24

Ejercicio #7

Dado el rombo del dibujo:

444777

¿Cuál es el área?

Solución en video

Solución Paso a Paso

Recordemos que el rombo tiene dos maneras de calcular su área:

La primera es lado por la altura del lado.

La segunda es diagonal por diagonal dividido 2.

Como nos dan las dos diagonales, lo calculamos de la segunda manera:

7×42=282=14 \frac{7\times4}{2}=\frac{28}{2}=14

Respuesta

14

Ejercicio #8

Dado el deltoide de la figura:

777444

¿Cuál es el área?

Solución en video

Solución Paso a Paso

En un principio, recordemos la fórmula del área de un deltoide

Diagonal1×Diagonal22 \frac{Diagonal1\times Diagonal2}{2}

Ambos datos ya existen, por lo que podemos colocarlos en la fórmula:

(4*7)/2

28/2

14

Respuesta

14

Ejercicio #9

¿Cuál es el área del trapecio de la figura?

777151515222AAABBBCCCDDDEEE

Solución en video

Solución Paso a Paso

Usamos la fórmula para calcular el área de un trapecio: (base+base) multiplicado por la altura dividido por 2:

(AB+DC)×BE2 \frac{(AB+DC)\times BE}{2}

(7+15)×22=22×22=442=22 \frac{(7+15)\times2}{2}=\frac{22\times2}{2}=\frac{44}{2}=22

Respuesta

22 22 cm²

Ejercicio #10

Dado el deltoide ABCD

La diagonal AC=8 es el área del deltoide es 32 cm²

Calcula la diagonal DB

S=32S=32S=32888AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero, recordamos la fórmula del área del deltoide: multiplicar las longitudes de las diagonales entre sí y dividir este producto por 2.

Reemplazamos los datos sabidos en la fórmula:

 8DB2=32 \frac{8\cdot DB}{2}=32

Simplificamos el 8 y el 2:

4DB=32 4DB=32

Dividimos por 4

DB=8 DB=8

Respuesta

8 cm

Ejercicio #11

Dado el trapecio ABCD

Dado en cm: AB=2.5 base DC=4 altura h=6

Calcula el área del trapecio

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero recordemos la fórmula del área del trapecio:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

Reemplazamos los datos en la fórmula:

(2.5+4)*6 =
6.5*6=
39/2 = 
19.5

Respuesta

1912 19\frac{1}{2}

Ejercicio #12

Dado el rectángulo que tiene un lado AB de largo 4.8 cm y el lado AD de largo 12 cm.
¿Cuál es el perímetro del rectángulo?
4.84.84.8121212AAABBBCCCDDD

Solución en video

Solución Paso a Paso

En el dibujo tenemos un rectángulo, aunque no está colocado en su forma estándar y está ligeramente girado,
pero esto no afecta que sea un rectángulo, y todavía tiene todas las propiedades de un rectángulo.
 
El perímetro de un rectángulo es la suma de todos sus lados, es decir, para hallar el perímetro del rectángulo tendremos que sumar las longitudes de todos los lados.
También sabemos que en un rectángulo los lados opuestos son iguales.
Por lo tanto, podemos usar los lados existentes para completar las longitudes que faltan.
 
4.8+4.8+12+12 =
33.6 cm

Respuesta

33.6 cm

Ejercicio #13

Cuál triángulo es el siguiente

606060606060606060AAABBBCCC

Solución en video

Solución Paso a Paso

Como en el triángulo dado todos los ángulos son iguales, todos los lados también lo son.

Se sabe que en un triángulo equilátero la medida de los ángulos siempre será igual a 60° ya que la suma de los ángulos en un triángulo es 180 grados:

60+60+60=180 60+60+60=180

Por lo tanto, es un triángulo equilátero.

Respuesta

Triángulo equilátero

Ejercicio #14

Dado el triángulo:

666888101010

¿Cuál es el perímetro del triángulo?

Solución en video

Solución Paso a Paso

El perímetro del triángulo es igual a la suma de todos los lados juntos, por lo tanto:

6+8+10=14+10=24 6+8+10=14+10=24

Respuesta

24

Ejercicio #15

Dado el triángulo:

777111111131313

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

El perímetro de un triángulo es igual a la suma de todos los lados juntos:

11+7+13=11+20=31 11+7+13=11+20=31

Respuesta

31