Formas geométricas

Hay una amplia variedad de formas geométricas, sobre las cuales puedes leer en detalle:

Triángulo

Rectángulo

Trapezoide

Paralelogramo

cometa

Rombo

Practicar Triángulo

ejemplos con soluciones para Triángulo

Ejercicio #1

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #3

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta

Si

Ejercicio #4

Dado el rectángulo ABCD que tiene el lado AB de largo 6 cm y el lado BC de largo 4 cm.
¿Cuál es el área del rectángulo?
666444AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Recuerda que la fórmula para el área de un rectángulo es ancho por alto

 

Se nos da que la ancho del rectángulo es 6

y que el largo del rectángulo es 4

 Por lo tanto calculamos:

6*4=24

Respuesta

24 cm²

Ejercicio #5

Dado el rombo del dibujo:

444777

¿Cuál es el área?

Solución en video

Solución Paso a Paso

Recordemos que el rombo tiene dos maneras de calcular su área:

La primera es lado por la altura del lado.

La segunda es diagonal por diagonal dividido 2.

Como nos dan las dos diagonales, lo calculamos de la segunda manera:

7×42=282=14 \frac{7\times4}{2}=\frac{28}{2}=14

Respuesta

14

Ejercicio #6

Dado el trapecio:

999121212555AAABBBCCCDDDEEE

¿Cuál es el área?

Solución en video

Solución Paso a Paso

Fórmula del área de un trapecio:

(base+base)2×altura \frac{(base+base)}{2}\times altura

Reemplazamos los datos en la fórmula y resolvemos:

9+122×5=212×5=1052=52.5 \frac{9+12}{2}\times5=\frac{21}{2}\times5=\frac{105}{2}=52.5

Respuesta

52.5

Ejercicio #7

Dado el trapecio ABCD

Dado en cm: AB=2.5 base DC=4 altura h=6

Calcula el área del trapecio

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero recordemos la fórmula del área del trapecio:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

Reemplazamos los datos en la fórmula:

(2.5+4)*6 =
6.5*6=
39/2 = 
19.5

Respuesta

1912 19\frac{1}{2}

Ejercicio #8

Dado el deltoide ABCD

La diagonal AC=8 es el área del deltoide es 32 cm²

Calcula la diagonal DB

S=32S=32S=32888AAABBBCCCDDD

Solución en video

Solución Paso a Paso

Primero, recordamos la fórmula del área del deltoide: multiplicar las longitudes de las diagonales entre sí y dividir este producto por 2.

Reemplazamos los datos sabidos en la fórmula:

 8DB2=32 \frac{8\cdot DB}{2}=32

Simplificamos el 8 y el 2:

4DB=32 4DB=32

Dividimos por 4

DB=8 DB=8

Respuesta

8 cm

Ejercicio #9

Dado el trapecio de la figura, ¿cuál es su perímetro?

444555999666

Solución en video

Solución Paso a Paso

Para hallar el perímetro sumaremos todos los lados:

4+5+9+6=9+9+6=18+6=24 4+5+9+6=9+9+6=18+6=24

Respuesta

24

Ejercicio #10

Dado el deltoide de la figura:

777444

¿Cuál es el área?

Solución en video

Solución Paso a Paso

En un principio, recordemos la fórmula del área de un deltoide

Diagonal1×Diagonal22 \frac{Diagonal1\times Diagonal2}{2}

Ambos datos ya existen, por lo que podemos colocarlos en la fórmula:

(4*7)/2

28/2

14

Respuesta

14

Ejercicio #11

¿Cuál es el área del trapecio de la figura?

777151515222AAABBBCCCDDDEEE

Solución en video

Solución Paso a Paso

Usamos la fórmula para calcular el área de un trapecio: (base+base) multiplicado por la altura dividido por 2:

(AB+DC)×BE2 \frac{(AB+DC)\times BE}{2}

(7+15)×22=22×22=442=22 \frac{(7+15)\times2}{2}=\frac{22\times2}{2}=\frac{44}{2}=22

Respuesta

22 22 cm²

Ejercicio #12

Dado un triángulo isósceles:

444666

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

Ya que nos referimos a un triángulo isósceles, los dos catetos son iguales entre sí.

En el dibujo nos dan la base que es igual a 4 y un lado es igual a 6, por lo tanto el otro lado también es igual a 6.

El perímetro del triángulo es igual a la suma de los lados entre sí y por lo tanto:

6+6+4=12+4=16 6+6+4=12+4=16

Respuesta

16

Ejercicio #13

Dado el trapecio de la figura

Dado que la base larga es mayor por 1.5 que la corta

Halla el perímetro del trapecio

222333555

Solución en video

Solución Paso a Paso

Primero calculamos la base larga a partir de los datos existentes:

Multiplique la base corta por 1.5:

5×1.5=7.5 5\times1.5=7.5

Ahora sumaremos todos los lados para hallar el perímetro:

2+5+3+7.5=7+3+7.5=10+7.5=17.5 2+5+3+7.5=7+3+7.5=10+7.5=17.5

Respuesta

17.5

Ejercicio #14

Dado el triángulo:

777111111131313

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

El perímetro de un triángulo es igual a la suma de todos los lados juntos:

11+7+13=11+20=31 11+7+13=11+20=31

Respuesta

31

Ejercicio #15

Dado el triángulo:

666888101010

¿Cuál es el perímetro del triángulo?

Solución en video

Solución Paso a Paso

El perímetro del triángulo es igual a la suma de todos los lados juntos, por lo tanto:

6+8+10=14+10=24 6+8+10=14+10=24

Respuesta

24