Triángulo - Ejemplos, Ejercicios y Soluciones

Triángulo

En este artículo aprenderemos resumidamente todo lo necesario sobre los triángulos y además ¡practicaremos con algunos ejercicios!
¡Comencemos!

Practicar Triángulo

ejemplos con soluciones para Triángulo

Ejercicio #1

Dados los tres ángulos:

Ángulo A es igual a 56°
Ángulo B es igual a 89°
Ángulo C es igual a 17°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

56+89+17=162 56+89+17=162

La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #2

Dados los tres ángulos:

Ángulo A es igual a 90°
Ángulo B es igual a 115°
Ángulo C es igual a 35°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

90+115+35=240 90+115+35=240
La suma de los ángulos dados no es igual a 180, por lo que no pueden formar un triángulo.

Respuesta

No

Ejercicio #3

Dados los tres ángulos:

Ángulo A es igual a 30°
Ángulo B es igual a 60°
Ángulo C es igual a 90°

¿Estos ángulos pueden componer un triángulo?

Solución en video

Solución Paso a Paso

Sumamos los tres ángulos para ver si son iguales a 180 grados:

30+60+90=180 30+60+90=180
La suma de los ángulos es igual a 180, por lo que pueden formar un triángulo.

Respuesta

Si

Ejercicio #4

Calcula el área del triángulo siguiente:

444555AAABBBCCCEEE

Solución en video

Solución Paso a Paso

La fórmula de cálculo del área triangular es:

(el lado * la altura del lado que desciende al lado) /2

Es decir:

BC×AE2 \frac{BC\times AE}{2}

Ahora reemplazamos los datos existentes:

4×52=202=10 \frac{4\times5}{2}=\frac{20}{2}=10

Respuesta

10

Ejercicio #5

¿Cuál es el área del triángulo dado?

555999666

Solución en video

Solución Paso a Paso

Esta pregunta es un poco confusa, debido a que a partir de los datos necesitamos identificar cuáles son relevantes para nosotros y utilizar solo ellos.

Recordando la fórmula para el área de un triángulo:

A1- Como hallar el área de un triánguloUna altura es una línea recta que sale de un ángulo y forma un ángulo recto con el lado opuesto.

En el dibujo tenemos una altura, de longitud 6.

que baja hasta el lado rojo cuya longitud es 5.

Y por lo tanto, estos son los datos que utilizaremos.

Reemplazamos en la fórmula:

6×52=302=15 \frac{6\times5}{2}=\frac{30}{2}=15

Respuesta

15

Ejercicio #6

Dado el triángulo ABC.
AC = 10 cm, AD = 3 cm, BC = 11.6 cm
¿Cuál es el área del triángulo?

11.611.611.6101010333AAABBBCCCDDD

Solución en video

Solución Paso a Paso

El triángulo que estamos viendo es el triángulo grande - ABC

El triángulo está formado por tres lados AB, BC y CA.

Ahora recordemos lo que necesitamos para el cálculo de un área triangular:

(lado x la altura que desciende del lado)/2

Por lo tanto, lo primero que debemos encontrar es una altura y un lado adecuados.

Se nos da el AC lateral, pero no hay altura que desciende, por lo que no nos sirve.

El lado AB no está dado,

Y así nos quedamos con el lado BC, que está dado.

Por el lado BC desciende la altura AD (los dos forman un ángulo de 90 grados).

Se puede argumentar que BC es también una altura, pero si profundizamos parece que CD puede ser una altura en el triángulo ADC,

y BD es una altura en el triángulo ADB (ambos son los lados de un triángulo rectángulo, por lo tanto son la altura y el lado).

Como no sabemos si el triángulo es isósceles o no, tampoco es posible saber si CD=DB, o cuál es su razón, y esta teoría falla.

Recordemos nuevamente la fórmula del área triangular y reemplacemos los datos que tenemos en la fórmula:

(lado* la altura que desciende del lado)/2

Ahora reemplazamos los datos existentes en esta fórmula:

CB×AD2 \frac{CB\times AD}{2}

11.6×32 \frac{11.6\times3}{2}

34.82=17.4 \frac{34.8}{2}=17.4

Respuesta

17.4

Ejercicio #7

Calcula el área del triángulo ABC mediante los datos del dibujo:

121212888999AAABBBCCCDDD

Solución en video

Solución Paso a Paso

En primer lugar, recordemos la fórmula para el área de un triángulo:

(el lado * la altura del desciende al lado) /2

 

En la pregunta tenemos tres datos, ¡pero uno de ellos es redundante!

Solo tenemos una altura, la línea que forma un ángulo de 90 grados - AD,

El lado al que desciende la altura es CB,

Por lo tanto, podemos usarlos en nuestro cálculo:

CB×AD2 \frac{CB\times AD}{2}

8×92=722=36 \frac{8\times9}{2}=\frac{72}{2}=36

Respuesta

36 cm²

Ejercicio #8

¿Cuál es el área del triángulo del dibujo?

5557778.68.68.6

Solución en video

Solución Paso a Paso

Primero identificaremos las partes que necesitamos para poder hallar el área del triángulo.

Fórmula del área del triángulo: altura*lado al que desciende de la altura / 2

Como es un triángulo rectángulo, sabemos que los lados rectos en realidad también son las alturas entre sí, es decir, el lado que mide 5 y el lado que mide 7.

Multiplicamos los catetos y se divide por 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Respuesta

17.5

Ejercicio #9

Calcula el área del triángulo rectángulo a continuación:

101010666888AAACCCBBB

Solución en video

Solución Paso a Paso

Como vemos que AB es perpendicular a BC y forma un ángulo de 90 grados

Se puede argumentar que AB es la altura del triángulo.

Entonces podemos calcular el área de la siguiente manera:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Respuesta

24 cm²

Ejercicio #10

Halla el área del triángulo (tenga en cuenta que esto no siempre es posible)

8.58.58.5777

Solución en video

Solución Paso a Paso

La fórmula para calcular el área de un triángulo es:

(lado * altura correspondiente al lado) / 2

Observa que en el triángulo que se nos proporciona, tenemos la longitud del lado pero no la altura.

Es decir, no tenemos datos suficientes para realizar el cálculo.

Respuesta

No se puede calcular

Ejercicio #11

Dado un triángulo isósceles:

444666

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

Ya que nos referimos a un triángulo isósceles, los dos catetos son iguales entre sí.

En el dibujo nos dan la base que es igual a 4 y un lado es igual a 6, por lo tanto el otro lado también es igual a 6.

El perímetro del triángulo es igual a la suma de los lados entre sí y por lo tanto:

6+6+4=12+4=16 6+6+4=12+4=16

Respuesta

16

Ejercicio #12

Halla a X mediante los datos de la figura:

S=20S=20S=20555XXXAAABBBCCC

Solución en video

Solución Paso a Paso

La fórmula para calcular el área del triángulo es:

(el lado * la altura que desciende del lado) /2

Colocamos los datos que tenemos en la fórmula para poder encontrar X:

20=AB×AC2 20=\frac{AB\times AC}{2}

20=x×52 20=\frac{x\times5}{2}

Multiplicamos por 2 para deshacernos de la fracción:

5x=40 5x=40

Dividimos en ambas secciones por 5:

5x5=405 \frac{5x}{5}=\frac{40}{5}

x=8 x=8

Respuesta

8

Ejercicio #13

Dado el triángulo isósceles,

777121212

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

Como el triángulo es isósceles, eso significa que sus dos catetos son iguales entre sí.

Por lo tanto la base es 7 y los otros dos lados son 12.

El perímetro de un triángulo es igual a la suma de todos los lados juntos:

12+12+7=24+7=31 12+12+7=24+7=31

Respuesta

31

Ejercicio #14

Dado el triángulo:

777111111131313

¿Cuál es su perímetro?

Solución en video

Solución Paso a Paso

El perímetro de un triángulo es igual a la suma de todos los lados juntos:

11+7+13=11+20=31 11+7+13=11+20=31

Respuesta

31

Ejercicio #15

Dado el triángulo:

666888101010

¿Cuál es el perímetro del triángulo?

Solución en video

Solución Paso a Paso

El perímetro del triángulo es igual a la suma de todos los lados juntos, por lo tanto:

6+8+10=14+10=24 6+8+10=14+10=24

Respuesta

24