1120=?
\( 112^0=\text{?} \)
\( (3^5)^4= \)
\( (6^2)^{13}= \)
\( \frac{2^4}{2^3}= \)
\( \frac{3^5}{3^2}= \)
Usamos la propiedad de potenciación del cero.
Obtenemos
Por lo tanto, la respuesta correcta es la opción C.
1
Para resolver el ejercicio usamos la propiedad de potencias.
Utilizamos la propiedad con el ejercicio específico y resolvemos:
Utilizamos la fórmula:
Por lo tanto obtenemos:
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:
Por lo tanto en el problema obtenemos:
Por lo tanto, la respuesta correcta es la opción a.
Usando la regla del cociente para exponentes: . Aquí, tenemos . Simplifying, we get .
\( \frac{5^6}{5^4}= \)
\( (4^2)^3+(g^3)^4= \)
\( (a\cdot b\cdot8)^2= \)
\( (a\times b\times c\times4)^7= \)
\( (y\times x\times3)^5= \)
Usando la regla del cociente para exponentes: .
Aquí, tenemos . Simplifying, we get .
Utilizamos la fórmula:
Utilizamos la fórmula
Por lo tanto, obtenemos:
Utilizamos la fórmula:
Por lo tanto, obtenemos:
Utilizamos la fórmula:
\( \frac{27}{3^8}=\text{?} \)
\( \frac{81}{3^2}= \)
\( \frac{9\cdot3}{8^0}=\text{?} \)
\( (0.25)^{-2}=\text{?} \)
\( 19^{-2}=\text{?} \)
Primero tengamos en cuenta que 27 es una potencia del número 3:
Usando este hecho se da una situación en la que en el numerador de la fracción y su denominador obtendremos términos con bases idénticas, lo aplicamos en el problema:
Ahora recordemos la propiedad de potenciación para la división entre términos sin bases idénticas:
Aplicamos la propiedad en la última expresión que obtuvimos:
Cuando en la primera etapa aplicamos la propiedad antes mencionada y en la segunda etapa simplificamos la expresión que recibimos en el exponente,
Resumimos los pasos de resolución, obtuvimos:
Por lo tanto, la respuesta correcta es la opción D.
Primero reconocemos que 81 es una potencia del número 3, lo que significa que:
Reemplazamos en el problema:
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción b.
Usamos la fórmula:
Sabemos que:
Por lo tanto, obtenemos:
Usamos la fórmula:
Primero convertimos la fracción decimal del problema en una fracción simple:
Cuando recordamos que 0,25 son 25 centésimas, es decir:
Entonces, reescribimos el problema:
Ahora usamos la propiedad de potenciación negativa:
Y nos ocupamos de la expresión fraccionaria dentro del paréntesis:
Cuando aplicamos la propiedad de potenciación antes mencionada a la expresión dentro del paréntesis,
A continuación recordamos la propiedad de potenciación para un exponente elevado a otro exponente:
Y aplicamos esta propiedad que obtuvimos en el último paso:
Cuando en el primer paso aplicamos cuidadosamente la propiedad antes mencionada y utilizamos paréntesis en el exponente para realizar la multiplicación entre las potencias, posteriormente simplificamos la expresión resultante y finalmente calculamos el resultado numérico obtenido en el último paso.
Resumimos los pasos de la solución:
Por lo tanto, la respuesta correcta es la opción B.
Para resolver el ejercicio, usamos la propiedad de potenciación de un exponente negativo
Usamos la propiedad para resolver el ejercicio:
Podemos continuar y resolver la potencia
\( 2^{-5}=\text{?} \)
\( 4^{-1}=\text{?} \)
\( 4^5-4^6\cdot\frac{1}{4}=\text{?} \)
\( 5^{-2} \)
\( 5^3+5^{-3}\cdot5^3=\text{?} \)
Usamos la propiedad de potenciación de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción A.
Usamos la propiedad de potenciación de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción B.
Usamos la propiedad de potenciación para un exponente negativo, pero en dirección opuesta:
Aplicamos esta propiedad al problema:
Cuando aplicamos la propiedad anterior para el segundo término desde la izquierda en la cantidad del problema y convertimos la fracción a un término con un exponente negativo,
Posteriormente usamos la propiedad de potenciación para multiplicar términos con bases idénticas:
Aplicamos esta propiedad en la expresión que obtuvimos en el último paso:
Cuando aplicamos la propiedad de potenciación antes mencionada al segundo término desde la izquierda en la cantidad en la expresión que obtuvimos en el último paso, luego simplificamos la expresión resultante,
Resumimos los pasos de resolución:
Obtuvimos que la respuesta es 0.
Por lo tanto, la respuesta correcta es la opción A.
0
Utilizamos la propiedad de potencias de un exponente negativo:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción d.
Usamos la propiedad de potenciación para multiplicar términos con bases idénticas:
y simplificamos mediante el segundo término desde la izquierda por la suma total en el problema:
Cuando en el primer paso aplicamos la propiedad antes mencionada al segundo término desde la izquierda, posteriormente simplificamos la expresión en el exponente de potencia y en el último paso utilizamos el hecho de que elevando cualquier número a la potencia de 0 dará como resultado 1 ,
Por supuesto, no tocamos el primer término porque ya está simplificado,
Por lo tanto, la respuesta correcta es la opción C.