ejemplos con soluciones para Aplicación de reglas de exponentes combinados: Variable Única

Ejercicio #1

Resuelva el ejercicio:

(a5)7= (a^5)^7=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(am)n=am×n (a^m)^n=a^{m\times n}

y por lo tanto obtenemos:

(a5)7=a5×7=a35 (a^5)^7=a^{5\times7}=a^{35}

Respuesta

a35 a^{35}

Ejercicio #2

Resuelva el ejercicio:

a2:a+a3a5= a^2:a+a^3\cdot a^5=

Solución en video

Solución Paso a Paso

Primero reescribimos la primera expresión de la izquierda del problema como una fracción:

a2a+a3a5 \frac{a^2}{a}+a^3\cdot a^5 Posteriormente usamos dos propiedades de potenciación, para multiplicar y dividir términos con bases idénticas:

A.

bmbn=bm+n b^m\cdot b^n=b^{m+n} 2.

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Regresamos al problema y aplicamos las dos propiedades de potenciación mencionadas anteriormente:

a2a+a3a5=a21+a3+5=a1+a8=a+a8 \frac{a^2}{a}+a^3\cdot a^5=a^{2-1}+a^{3+5}=a^1+a^8=a+a^8

Más adelante tengamos en cuenta que debemos descomponer en factores la expresión que obtuvimos en el último paso extrayendo el factor común,

Por lo tanto, extraemos de fuera de los paréntesis el máximo divisor común a los dos términos que son:

a a Obtenemos la expresión:

a+a8=a(1+a7) a+a^8=a(1+a^7) cuando utilizamos la propiedad de potenciación mencionada anteriormente en A.

a8=a1+7=a1a7=aa7 a^8=a^{1+7}=a^1\cdot a^7=a\cdot a^7

Resumiendo la solución al problema y todos los pasos, obtuvimos lo siguiente:

a2a+a3a5=a(1+a7) \frac{a^2}{a}+a^3\cdot a^5=a(1+a^{7)} Por lo tanto, la respuesta correcta es la opción b.

Respuesta

a(1+a7) a(1+a^7)

Ejercicio #3

(x43)3= (x\cdot4\cdot3)^3=

Solución en video

Solución Paso a Paso

Utiliza la ley de potencias para una potencia que se aplica a los paréntesis en los que se multiplican los términos:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

Aplicamos la ley en el problema:

(x43)3=x34333 (x\cdot4\cdot3)^3= x^3\cdot4^3\cdot3^3

Cuando aplicamos la potencia entre paréntesis al producto de los términos a cada término del producto por separado y mantenemos el producto,

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

x34333 x^3\cdot4^3\cdot3^3

Ejercicio #4

(a4)6= (a^4)^6=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula

(am)n=am×n (a^m)^n=a^{m\times n}

Por lo tanto obtenemos:

a4×6=a24 a^{4\times6}=a^{24}

Respuesta

a24 a^{24}

Ejercicio #5

((b3)6)2= ((b^3)^6)^2=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula

(am)n=am×n (a^m)^n=a^{m\times n}

Por lo tanto obtenemos:

((b3)6)2=(b3×6)2=(b18)2=b18×2=b36 ((b^3)^6)^2=(b^{3\times6})^2=(b^{18})^2=b^{18\times2}=b^{36}

Respuesta

b36 b^{36}

Ejercicio #6

(42)3+(g3)4= (4^2)^3+(g^3)^4=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(am)n=am×n (a^m)^n=a^{m\times n}

(42)3+(g3)4=42×3+g3×4=46+g12 (4^2)^3+(g^3)^4=4^{2\times3}+g^{3\times4}=4^6+g^{12}

Respuesta

46+g12 4^6+g^{12}

Ejercicio #7

(5x3)3= (5\cdot x\cdot3)^3=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(5×x×3)3=(15x)3 (5\times x\times3)^3=(15x)^3

(15x)3=(15×x)3 (15x)^3=(15\times x)^3

153x3 15^3x^3

Respuesta

153x3 15^3\cdot x^3

Ejercicio #8

((y6)8)9= ((y^6)^8)^9=

Solución en video

Solución Paso a Paso

Utilizamos la ley de potencias de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Lo aplicamos en el problema:

((y6)8)9=(y68)9=y689=y432 \big((y^6)^8\big)^9=(y^{6\cdot8})^9=y^{6\cdot8\cdot9}=y^{432} Cuando usamos la propiedad antes mencionada dos veces, la primera vez para los paréntesis internos en la primera etapa y la segunda vez para los paréntesis restantes en la segunda etapa, en la última etapa calculamos el resultado de la multiplicación en el exponente de potencia.

Por lo tanto, la respuesta correcta es la opción b.

Respuesta

y432 y^{432}

Ejercicio #9

(y×7×3)4= (y\times7\times3)^4=

Solución en video

Solución Paso a Paso

Utilizamos la ley de potencias para la multiplicación entre paréntesis:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n Lo aplicamos en el problema:

(y73)4=y47434 (y\cdot7\cdot3)^4=y^4\cdot7^4\cdot3^4 Por lo tanto, la respuesta correcta es la opción a.

Nota:

De la fórmula de la propiedad de potencias entre paréntesis mencionada anteriormente, se puede entender que se refiere solo a dos términos del producto entre paréntesis, pero en realidad también es válida para la potencia sobre una multiplicación de muchos términos entre paréntesis, como por ejemplo lo que se hizo en este problema y en otros problemas.

Un buen ejercicio es demostrar que si la propiedad anterior es válida para una potencia sobre un producto de dos términos entre paréntesis (como está formula anteriormente), entonces también es válida para una potencia sobre varios términos del producto entre paréntesis (por ejemplo - tres términos, etc.).

Respuesta

y4×74×34 y^4\times7^4\times3^4

Ejercicio #10

Resuelve el ejercicio:

Y2+Y6Y5Y= Y^2+Y^6-Y^5\cdot Y=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Lo aplicamos en el problema:

Y2+Y6Y5Y=Y2+Y6Y5+1=Y2+Y6Y6=Y2 Y^2+Y^6-Y^5\cdot Y=Y^2+Y^6-Y^{5+1}=Y^2+Y^6-Y^6=Y^2 Cuando aplicamos la propiedad anterior a la tercera expresión desde la izquierda en la suma, y ​​luego simplificamos la expresión total recopilando términos semejantes.

Por lo tanto, la respuesta correcta es la opción D.

Respuesta

Y2 Y^2

Ejercicio #11

a4=? a^{-4}=\text{?}

(a0) (a\ne0)

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

a4=1a4 a^{-4}=\frac{1}{a^4} Por lo tanto, la respuesta correcta es la opción B.

Respuesta

1a4 \frac{1}{a^4}

Ejercicio #12

((a2)3)14= ((a^2)^3)^{\frac{1}{4}}=

Solución en video

Solución Paso a Paso

Utilizamos la ley de potencias de un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Lo aplicamos en el problema:

((a2)3)14=(a23)14=a2314=a64=a32 \big((a^2)^3\big)^{\frac{1}{4}}=(a^{2\cdot3})^{\frac{1}{4}}=a^{2\cdot3\cdot\frac{1}{4}}=a^{\frac{6}{4}}=a^{\frac{3}{2}} Cuando usamos la propiedad mencionada anteriormente dos veces, la primera vez para los paréntesis internos en la primera etapa y la segunda vez para los paréntesis restantes en la segunda etapa, en la tercera etapa calculamos el resultado de la multiplicación en el exponente. Mientras recordamos que multiplicar por una fracción en realidad es duplicar el numerador de la fracción y, finalmente, en la última etapa simplificamos la fracción que obtuvimos en el exponente.

Ahora recuerda que

32=112=1.5 \frac{3}{2}=1\frac{1}{2}=1.5

Por lo tanto, la respuesta correcta es la opción a.

Respuesta

a1.5 a^{1.5}

Ejercicio #13

Inserta la expresión correspondiente:

b5b2= \frac{b^5}{b^2}=

Solución en video

Respuesta

b3 b^3

Ejercicio #14

Inserta la expresión correspondiente:

x6x4= \frac{x^6}{x^4}=

Solución en video

Respuesta

x2 x^2

Ejercicio #15

Inserta la expresión correspondiente:

y9y3= \frac{y^9}{y^3}=

Solución en video

Respuesta

y6 y^6

Ejercicio #16

Inserta la expresión correspondiente:

(x3)4= \left(x^3\right)^4=

Solución en video

Respuesta

x12 x^{12}

Ejercicio #17

Reduce la siguiente ecuación:

a2×a5×a3= a^2\times a^5\times a^3=

Solución en video

Respuesta

a10 a^{10}

Ejercicio #18

Resuelva el ejercicio

a12a9×a3a4= \frac{a^{12}}{a^9}\times\frac{a^3}{a^4}=

Solución en video

Respuesta

a2 a^2

Ejercicio #19

Resuelva el ejercicio

b22b20×b30b20= \frac{b^{22}}{b^{20}}\times\frac{b^{30}}{b^{20}}=

Solución en video

Respuesta

b12 b^{12}

Ejercicio #20

Resuelva el ejercicio

[a4a3×a8a7]:a10a8 \lbrack\frac{a^4}{a^3}\times\frac{a^8}{a^7}\rbrack:\frac{a^{10}}{a^8}

Solución en video

Respuesta

1 1