ejemplos con soluciones para Aplicación de reglas de exponentes combinados: Uso de variables

Ejercicio #1

a4=? a^{-4}=\text{?}

(a0) (a\ne0)

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

a4=1a4 a^{-4}=\frac{1}{a^4} Por lo tanto, la respuesta correcta es la opción B.

Respuesta

1a4 \frac{1}{a^4}

Ejercicio #2

82x=? 8^{-2x}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación para un exponente negativo:

an=1an a^{-n}=\frac{1}{a^n} La aplicamos al problema:

82x=182x 8^{-2x}=\frac{1}{8^{2x}} A continuación utilizamos la propiedad de potenciación para un exponente elevado a otro exponente:

(am)n=amn (a^m)^n=a^{m\cdot n} Aplicamos esta propiedad al término en el denominador de la fracción obtenida en el último paso:

182x=1(82)x=164x \frac{1}{8^{2x}}=\frac{1}{(8^2)^x}=\frac{1}{64^x} Cuando en realidad usamos la propiedad antes mencionada en sentido contrario, es decir, en lugar de abrir los paréntesis y realizar una multiplicación en el exponente, interpretamos el producto en el exponente de la potencia como una forma de exponente elevado a otro exponente poder sobre potencia, en el último paso calculamos el resultado de la potencia dentro de los paréntesis en el denominador.

Resumimos los pasos de resolución, obtenemos que:

82x=182x=164x 8^{-2x}= \frac{1}{8^{2x}}=\frac{1}{64^x}

Por lo tanto, la respuesta correcta es la opción D.

Respuesta

164x \frac{1}{64^x}

Ejercicio #3

xa=? x^{-a}=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación de un exponente negativo:

bn=1bn b^{-n}=\frac{1}{b^n} Lo aplicamos en el problema:

xa=1xa x^{-a}=\frac{1}{x^a} Por lo tanto, la respuesta correcta es la opción C.

Respuesta

1xa \frac{1}{x^a}

Ejercicio #4

1an=? \frac{1}{a^n}=\text{?}

a0 a\ne0

Solución en video

Respuesta

an a^{-n}