Propiedades de potenciación - Ejemplos, Ejercicios y Soluciones

Tipos de Preguntas:
Aplicación de reglas de exponentes combinados: Exponente CeroAplicación de reglas de exponentes combinados: Factorización del Máximo Común Divisor (MCD)Aplicación de reglas de exponentes combinados: Más de una incógnitaAplicación de reglas de exponentes combinados: Problemas escritosAplicación de reglas de exponentes combinados: Uso de variablesAplicación de reglas de exponentes combinados: Variable en el exponente de la potenciaAplicación de reglas de exponentes combinados: Completar la ecuaciónAplicación de reglas de exponentes combinados: Usando propiedades de exponentes con parámetrosAplicación de reglas de exponentes combinados: FactorizaciónAplicación de reglas de exponentes combinados: Multiplicación de exponentes con la misma baseAplicación de reglas de exponentes combinados: Convirtiendo exponentes negativos a exponentes positivosAplicación de reglas de exponentes combinados: Número de términosAplicación de reglas de exponentes combinados: Presentando potencias con exponentes negativos como fraccionesAplicación de reglas de exponentes combinados: Tres TérminosAplicación de reglas de exponentes combinados: Dos VariablesAplicación de reglas de exponentes combinados: Identificar el valor mayorAplicación de reglas de exponentes combinados: Presentando potencias en el denominador como potencias con exponentes negativosAplicación de reglas de exponentes combinados: Variables en el exponente de la potenciaAplicación de reglas de exponentes combinados: Uso de las leyes de los exponentesAplicación de reglas de exponentes combinados: Dos TérminosAplicación de reglas de exponentes combinados: Variable ÚnicaAplicación de reglas de exponentes combinados: Variable en la base de la potenciaAplicación de reglas de exponentes combinados: Presentando potencias con exponentes negativos como fraccionesAplicación de reglas de exponentes combinados: Calculando potencias con exponentes negativosAplicación de reglas de exponentes combinados: Aplicación de la fórmulaAplicación de reglas de exponentes combinados: Término ÚnicoAplicación de reglas de exponentes combinados: Uso de múltiples reglasAplicación de reglas de exponentes combinados: Ley de una potencia

Definición de potencia

La potencia es una manera de escribir de forma abreviada la multiplicación de un término por sí mismo varias veces.

La cifra que se multiplica por sí misma recibe el nombre de base, mientras que la cantidad de veces que se multiplica la base se llama exponente.

n veces

an=aaa a^n=a\cdot a\cdot a ... (n veces)

Por ejemplo:

5555=54 5\cdot5\cdot5\cdot5=5^4

5 5 es la base, mientras que 4 4 es el exponente.

En este caso, la cifra 5 5 se multiplica 4 4 veces por sí misma y, por tanto, se expresa como 5 5 elevado a la cuarta potencia o 5 5 elevado a 4 4 .

Practicar Propiedades de potenciación

ejemplos con soluciones para Propiedades de potenciación

Ejercicio #1

(35)4= (3^5)^4=

Solución en video

Solución Paso a Paso

Para resolver el ejercicio usamos la propiedad de potencias.(an)m=anm (a^n)^m=a^{n\cdot m}

Utilizamos la propiedad con el ejercicio específico y resolvemos:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Respuesta

320 3^{20}

Ejercicio #2

(23)6= (2^3)^6 =

Solución Paso a Paso

Para resolver la expresión dada (23)6 (2^3)^6 , aplicamos la regla de potencia de una potencia (am)n=amn (a^m)^n = a^{m \cdot n} . Aquí, a=2 a = 2 , m=3 m = 3 , y n=6 n = 6 .

Por lo tanto, calculamos el exponente:

36=18 3 \cdot 6 = 18

Entonces, (23)6=218 (2^3)^6 = 2^{18} .

Respuesta

218 2^{18}

Ejercicio #3

(43)2= (4^3)^2=

Solución Paso a Paso

Para resolver (43)2 (4^3)^2 , usamos la regla de la potencia de una potencia que establece que (am)n=amn (a^m)^n = a^{m \cdot n} .

Aquí, a=4 a = 4 , m=3 m = 3 , y n=2 n = 2 .

Entonces, calculamos 432 4^{3 \cdot 2} ,

que se simplifica a 46 4^6 .

Respuesta

46 4^6

Ejercicio #4

2423= \frac{2^4}{2^3}=

Solución en video

Solución Paso a Paso

Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Lo aplicamos en el problema:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:

b1=b b^1=b Por lo tanto en el problema obtenemos:

21=2 2^1=2 Por lo tanto, la respuesta correcta es la opción a.

Respuesta

2 2

Ejercicio #5

1120=? 112^0=\text{?}

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación del cero.

X0=1 X^0=1 Obtenemos

1120=1 112^0=1 Por lo tanto, la respuesta correcta es la opción C.

Respuesta

1

Ejercicio #6

50= 5^0=

Solución en video

Solución Paso a Paso

Usamos la propiedad de potenciación:

X0=1 X^0=1 Lo aplicamos en el problema:

50=1 5^0=1 Por lo tanto, la respuesta correcta es C.

Respuesta

1 1

Ejercicio #7

3532= \frac{3^5}{3^2}=

Solución en video

Solución Paso a Paso

Usando la regla del cociente para exponentes: aman=amn \frac{a^m}{a^n} = a^{m-n} . Aquí, tenemos 3532=352 \frac{3^5}{3^2} = 3^{5-2} . Simplifying, we get 33 3^3 .

Respuesta

33 3^3

Ejercicio #8

5654= \frac{5^6}{5^4}=

Solución en video

Solución Paso a Paso

Usando la regla del cociente para exponentes: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Aquí, tenemos 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Respuesta

52 5^2

Ejercicio #9

(62)13= (6^2)^{13}=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula:

(an)m=an×m (a^n)^m=a^{n\times m}

Por lo tanto obtenemos:

62×13=626 6^{2\times13}=6^{26}

Respuesta

626 6^{26}

Ejercicio #10

Simplifique la expresión:

a3a2b4b5= a^3\cdot a^2\cdot b^4\cdot b^5=

Solución en video

Solución Paso a Paso

En el ejercicio de multiplicación de potencias sumaremos todas las potencias de un mismo producto, en este caso los términos a,b

Utilizamos la fórmula:

an×am=an+m a^n\times a^m=a^{n+m}

Vamos a enfocarnos en el término a:

a3×a2=a3+2=a5 a^3\times a^2=a^{3+2}=a^5

Vamos a enfocarnos en el término b:

b4×b5=b4+5=b9 b^4\times b^5=b^{4+5}=b^9

Por lo tanto, el ejercicio que se obtendrá tras la simplificación es:

a5×b9 a^5\times b^9

Respuesta

a5b9 a^5\cdot b^9

Ejercicio #11

ababa2 a\cdot b\cdot a\cdot b\cdot a^2

Solución en video

Solución Paso a Paso

Usamos la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Cabe recalcar que esta propiedad sólo es válida para términos con bases idénticas,

Retornamos al problema

Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:

ababa2=aaa2bb a\cdot b\operatorname{\cdot}a\operatorname{\cdot}b\operatorname{\cdot}a^2=a\cdot a\cdot a^2\cdot b\cdot b Posteriormente aplicamos la ley de potencias mencionada para cada tipo de término por separado,

aaa2bb=a1+1+2b1+1=a4b2 a\cdot a\cdot a^2\cdot b\cdot b=a^{1+1+2}\cdot b^{1+1}=a^4\cdot b^2

Cuando en realidad aplicamos la ley antes mencionada por separado - para los términos cuyas basea a y para los términos cuyas bases b b y sumamos los exponentes cuando insertamos todos los términos con la misma base en la misma base.

Por lo tanto, la respuesta correcta es la opción c.

Nota:

Usamos el hecho de que:

a=a1 a=a^1 y lo mismo para b b .

Respuesta

a4b2 a^4\cdot b^2

Ejercicio #12

k2t4k6t2= k^2\cdot t^4\cdot k^6\cdot t^2=

Solución en video

Solución Paso a Paso

Usando la propiedad de potencias para multiplicar términos con bases idénticas:

aman=am+n a^m\cdot a^n=a^{m+n} Cabe destacar que esta ley sólo es válida para términos con bases idénticas,

Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:

k2t4k6t2=k2k6t4t2 k^2t^4k^6t^2=k^2k^6t^4t^2 Más adelante aplicamos la mencionada propiedad de multiplicación a cada tipo diferente de término por separado,

k2k6t4t2=k2+6t4+2=k8t6 k^2k^6t^4t^2=k^{2+6}t^{4+2}=k^8t^6 Cuando en realidad aplicamos la propiedad antes mencionada por separado - para los términos cuyas bases sonk k y para los términos cuyas bases sont t Sumamos las potencias en el exponente cuando insertamos todos los términos con la misma base.

La respuesta correcta entonces es la opción b.

Respuesta

k8t6 k^8\cdot t^6

Ejercicio #13

(x43)3= (x\cdot4\cdot3)^3=

Solución en video

Solución Paso a Paso

Utiliza la ley de potencias para una potencia que se aplica a los paréntesis en los que se multiplican los términos:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

Aplicamos la ley en el problema:

(x43)3=x34333 (x\cdot4\cdot3)^3= x^3\cdot4^3\cdot3^3

Cuando aplicamos la potencia entre paréntesis al producto de los términos a cada término del producto por separado y mantenemos el producto,

Por lo tanto, la respuesta correcta es la opción C.

Respuesta

x34333 x^3\cdot4^3\cdot3^3

Ejercicio #14

(a4)6= (a^4)^6=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula

(am)n=am×n (a^m)^n=a^{m\times n}

Por lo tanto obtenemos:

a4×6=a24 a^{4\times6}=a^{24}

Respuesta

a24 a^{24}

Ejercicio #15

((b3)6)2= ((b^3)^6)^2=

Solución en video

Solución Paso a Paso

Utilizamos la fórmula

(am)n=am×n (a^m)^n=a^{m\times n}

Por lo tanto obtenemos:

((b3)6)2=(b3×6)2=(b18)2=b18×2=b36 ((b^3)^6)^2=(b^{3\times6})^2=(b^{18})^2=b^{18\times2}=b^{36}

Respuesta

b36 b^{36}