Comprender la combinación de potencias y raíces es importante y necesario.
Primera propiedad:
Segunda propiedad:
Tercera propiedad:
Cuarta propiedad:
Quinta propiedad:
Comprender la combinación de potencias y raíces es importante y necesario.
Primera propiedad:
Segunda propiedad:
Tercera propiedad:
Cuarta propiedad:
Quinta propiedad:
\( 112^0=\text{?} \)
\( \frac{2^4}{2^3}= \)
\( \frac{3^5}{3^2}= \)
\( (3^5)^4= \)
\( \frac{5^6}{5^4}= \)
Usamos la propiedad de potenciación del cero.
Obtenemos
Por lo tanto, la respuesta correcta es la opción C.
1
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:
Por lo tanto en el problema obtenemos:
Por lo tanto, la respuesta correcta es la opción a.
Usando la regla del cociente para exponentes: . Aquí, tenemos . Simplifying, we get .
Para resolver el ejercicio usamos la propiedad de potencias.
Utilizamos la propiedad con el ejercicio específico y resolvemos:
Usando la regla del cociente para exponentes: .
Aquí, tenemos .Simplificando,obtenemos \)
\( (6^2)^{13}= \)
Resuelva el ejercicio:
\( (a^5)^7= \)
Resuelva el siguiente ejercicio:
\( \sqrt{1}\cdot\sqrt{2}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{16}\cdot\sqrt{1}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{2}\cdot\sqrt{5}= \)
Utilizamos la fórmula:
Por lo tanto obtenemos:
Resuelva el ejercicio:
Utilizamos la fórmula:
y por lo tanto obtenemos:
Resuelva el siguiente ejercicio:
Comencemos recordando cómo definir una raíz cuadrada como una potencia:
Luego, recordemos que elevar 1 a cualquier potencia siempre nos da 1, incluso la potencia de un medio que obtuvimos al convertir la raíz cuadrada.
En otras palabras:
Por lo tanto, la respuesta correcta es la opción a.
Resuelva el siguiente ejercicio:
Comencemos recordando cómo definir una raíz como una potencia:
A continuación, recordaremos que elevar 1 a cualquier potencia siempre dará como resultado 1, incluso la potencia de un medio de la raíz cuadrada.
En otras palabras:
Por lo tanto, la respuesta correcta es la opción D.
Resuelva el siguiente ejercicio:
Para simplificar la expresión dada usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
B. La ley de exponentes para dividir potencias con las mismas bases (en la dirección opuesta):
Empecemos cambiando las raíces cuadradas a exponentes usando la ley de exponentes mostrada en A:
Continuamos: como estamos multiplicando dos términos con exponentes iguales podemos usar la ley de exponentes mostrada en B y combinarlos juntos como la misma base elevada a la misma potencia:
En los últimos pasos multiplicamos las bases y luego usamos la definición de la raíz como un exponente mostrada anteriormente en A (en la dirección opuesta) para volver a la notación de raíz.
Por lo tanto, la respuesta correcta es la opción B.
Resuelva el siguiente ejercicio:
\( \sqrt{10}\cdot\sqrt{3}= \)
\( (3\times4\times5)^4= \)
\( a\cdot b\cdot a\cdot b\cdot a^2 \)
\( (4\times7\times3)^2= \)
\( (4^2)^3+(g^3)^4= \)
Resuelva el siguiente ejercicio:
Para simplificar la expresión dada, usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
B. La ley de exponentes para dividir potencias con la misma base (en la dirección opuesta):
Empecemos usando la ley de exponentes mostrada en A:
Continuamos, ya que tenemos una multiplicación entre dos términos con exponentes iguales, podemos usar la ley de exponentes mostrada en B y combinarlos bajo la misma base que está elevada al mismo exponente:
En los últimos pasos, realizamos la multiplicación de las bases y usamos la definición de la raíz como exponente mostrada anteriormente en A (en la dirección opuesta) para volver a la notación de raíz.
Por lo tanto, la respuesta correcta es B.
Utilizamos la ley de potencias para la multiplicación entre paréntesis:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción b.
Nota:
De la fórmula de la propiedad de potencias entre paréntesis mencionada anteriormente, se puede entender que se refiere solo a dos términos de la multiplicación entre paréntesis, pero en realidad también es válida para la potencia sobre una multiplicación de muchos términos entre paréntesis, como por ejemplo lo que se hizo en este problema y en otros problemas.
Un buen ejercicio es demostrar que si la ley anterior es válida para una potencia sobre una multiplicación de dos términos entre paréntesis (como está formula anteriormente), entonces también es válida para una potencia sobre varios términos del producto entre paréntesis (por ejemplo - tres términos, etc.).
Usamos la propiedad de potencias para multiplicar términos con bases idénticas:
Cabe recalcar que esta propiedad sólo es válida para términos con bases idénticas,
Retornamos al problema
Notamos que en el problema hay dos tipos de términos que difieren entre sí en diferentes bases. Primero, por el bien del orden, usaremos la propiedad sustitutiva en la multiplicación para ordenar la expresión de manera que los dos términos con la misma base sean adyacentes, procederemos a trabajar:
Posteriormente aplicamos la ley de potencias mencionada para cada tipo de término por separado,
Cuando en realidad aplicamos la ley antes mencionada por separado - para los términos cuyas basey para los términos cuyas bases y sumamos los exponentes cuando insertamos todos los términos con la misma base en la misma base.
Por lo tanto, la respuesta correcta es la opción c.
Nota:
Usamos el hecho de que:
y lo mismo para .
Utilizamos la ley de potencias para la multiplicación entre paréntesis:
Lo aplicamos en el problema:
Por lo tanto, la respuesta correcta es la opción a.
Nota:
De la fórmula de la propiedad de potencias entre paréntesis mencionada anteriormente, se puede entender que se refiere solo a dos términos de la multiplicación entre paréntesis, pero en realidad también es válida para la potencia sobre una multiplicación de muchos términos entre paréntesis, como por ejemplo lo que se hizo en este problema y en otros problemas.
Un buen ejercicio es demostrar que si la ley anterior es válida para una potencia sobre una multiplicación de dos términos entre paréntesis (como está formula anteriormente), entonces también es válida para una potencia sobre varios términos del producto entre paréntesis (por ejemplo - tres términos, etc.).
Utilizamos la fórmula: