Comprender la combinación de potencias y raíces es importante y necesario.
Primera propiedad:
Segunda propiedad:
Tercera propiedad:
Cuarta propiedad:
Quinta propiedad:
Comprender la combinación de potencias y raíces es importante y necesario.
Primera propiedad:
Segunda propiedad:
Tercera propiedad:
Cuarta propiedad:
Quinta propiedad:
Resuelva el ejercicio:
\( (a^5)^7= \)
Resuelva el siguiente ejercicio:
\( \sqrt{16}\cdot\sqrt{1}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{1}\cdot\sqrt{2}= \)
\( 112^0=\text{?} \)
\( (3^5)^4= \)
Resuelva el ejercicio:
Utilizamos la fórmula:
y por lo tanto obtenemos:
Resuelva el siguiente ejercicio:
Comencemos recordando cómo definir una raíz como una potencia:
A continuación, recordaremos que elevar 1 a cualquier potencia siempre dará como resultado 1, incluso la potencia de un medio de la raíz cuadrada.
En otras palabras:
Por lo tanto, la respuesta correcta es la opción D.
Resuelva el siguiente ejercicio:
Comencemos recordando cómo definir una raíz cuadrada como una potencia:
Luego, recordemos que elevar 1 a cualquier potencia siempre nos da 1, incluso la potencia de un medio que obtuvimos al convertir la raíz cuadrada.
En otras palabras:
Por lo tanto, la respuesta correcta es la opción a.
Usamos la propiedad de potenciación del cero.
Obtenemos
Por lo tanto, la respuesta correcta es la opción C.
1
Para resolver el ejercicio usamos la propiedad de potencias.
Utilizamos la propiedad con el ejercicio específico y resolvemos:
\( (6^2)^{13}= \)
\( \frac{2^4}{2^3}= \)
\( \frac{3^5}{3^2}= \)
\( \frac{5^6}{5^4}= \)
Resuelva el ejercicio:
\( a^2:a+a^3\cdot a^5= \)
Utilizamos la fórmula:
Por lo tanto obtenemos:
Tengamos en cuenta que el numerador y denominador de la fracción tienen términos con la misma base, por lo tanto usamos la propiedad de potencias para dividir entre términos con la misma base:
Lo aplicamos en el problema:
Recordemos que todo número elevado a la 1ª potencia es igual al número mismo, es decir que:
Por lo tanto en el problema obtenemos:
Por lo tanto, la respuesta correcta es la opción a.
Usando la regla del cociente para exponentes: . Aquí, tenemos . Simplifying, we get .
Usando la regla del cociente para exponentes: .
Aquí, tenemos . Simplifying, we get .
Resuelva el ejercicio:
Primero reescribimos la primera expresión de la izquierda del problema como una fracción:
Posteriormente usamos dos propiedades de potenciación, para multiplicar y dividir términos con bases idénticas:
A.
2.
Regresamos al problema y aplicamos las dos propiedades de potenciación mencionadas anteriormente:
Más adelante tengamos en cuenta que debemos descomponer en factores la expresión que obtuvimos en el último paso extrayendo el factor común,
Por lo tanto, extraemos de fuera de los paréntesis el máximo divisor común a los dos términos que son:
Obtenemos la expresión:
cuando utilizamos la propiedad de potenciación mencionada anteriormente en A.
Resumiendo la solución al problema y todos los pasos, obtuvimos lo siguiente:
Por lo tanto, la respuesta correcta es la opción b.
Resuelva el siguiente ejercicio:
\( \sqrt{100}\cdot\sqrt{25}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{10}\cdot\sqrt{3}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{25}\cdot\sqrt{4}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{2}\cdot\sqrt{2}= \)
Resuelva el siguiente ejercicio:
\( \sqrt{2}\cdot\sqrt{5}= \)
Resuelva el siguiente ejercicio:
Podemos simplificar la expresión sin usar las leyes de los exponentes, porque la expresión tiene raíces cuadradas conocidas, así que simplifiquemos la expresión y luego realicemos la multiplicación:
Por lo tanto, la respuesta correcta es la opción D.
Resuelva el siguiente ejercicio:
Para simplificar la expresión dada, usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
B. La ley de exponentes para dividir potencias con la misma base (en la dirección opuesta):
Empecemos usando la ley de exponentes mostrada en A:
Continuamos, ya que tenemos una multiplicación entre dos términos con exponentes iguales, podemos usar la ley de exponentes mostrada en B y combinarlos bajo la misma base que está elevada al mismo exponente:
En los últimos pasos, realizamos la multiplicación de las bases y usamos la definición de la raíz como exponente mostrada anteriormente en A (en la dirección opuesta) para volver a la notación de raíz.
Por lo tanto, la respuesta correcta es B.
Resuelva el siguiente ejercicio:
Podemos simplificar la expresión directamente sin usar las leyes de los exponentes, ya que la expresión tiene raíces cuadradas conocidas, así que simplifiquemos la expresión y luego realicemos la multiplicación:
Por lo tanto, la respuesta correcta es la opción C.
Resuelva el siguiente ejercicio:
Para simplificar la expresión dada, usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
B. La ley de multiplicación de exponentes para bases idénticas:
Comencemos desde la raíz cuadrada de los exponentes usando la ley mostrada en A:
Continuamos: nota que obtuvimos un número multiplicado por sí mismo. De acuerdo con la definición del exponente, podemos escribir la expresión como un exponente de ese número. Luego, usamos la ley de exponentes mostrada en B y aplicamos todo el exponente al término entre paréntesis:
Por lo tanto, la respuesta correcta es la opción B.
Resuelva el siguiente ejercicio:
Para simplificar la expresión dada usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
B. La ley de exponentes para dividir potencias con las mismas bases (en la dirección opuesta):
Empecemos cambiando las raíces cuadradas a exponentes usando la ley de exponentes mostrada en A:
Continuamos: como estamos multiplicando dos términos con exponentes iguales podemos usar la ley de exponentes mostrada en B y combinarlos juntos como la misma base elevada a la misma potencia:
En los últimos pasos multiplicamos las bases y luego usamos la definición de la raíz como un exponente mostrada anteriormente en A (en la dirección opuesta) para volver a la notación de raíz.
Por lo tanto, la respuesta correcta es la opción B.