Simplifica la expresión (x+y+1)2 (x+y+1)^2 (x+y+1)2
x2+2x+y2+2y+2xy+1 x^2+2x+y^2+2y+2xy+1 x2+2x+y2+2y+2xy+1
x2+x+y2+y+xy+1 x^2+x+y^2+y+xy+1 x2+x+y2+y+xy+1
x2−(x+4)2=40 x^2-(x+4)^2=40 x2−(x+4)2=40
x=−7 x=-7 x=−7
x=3 x=3 x=3
(3+y3)2=(2+y)2−89y2 (3+\frac{y}{3})^2=(2+y)^2-\frac{8}{9}y^2 (3+3y)2=(2+y)2−98y2
7.5
2.5
2x2+4xy+2y2+(x+y)2(x+y)= \frac{\sqrt{2x^2+4xy+2y^2+(x+y)^2}}{(x+y)}= (x+y)2x2+4xy+2y2+(x+y)2=
1 1 1
3 \sqrt{3} 3
7+(x−5)2=(x+3)(x+3) 7+(x-5)^2=(x+3)(x+3) 7+(x−5)2=(x+3)(x+3)
x=−0.04 x=-0.04 x=−0.04
x=11623 x=1\frac{16}{23} x=12316
Halla a a dado que
2a(a−5)=(a+3)2+(a−3)2 2a(a-5)=(a+3)^2+(a-3)^2 2a(a−5)=(a+3)2+(a−3)2
0 0 0
−1.8 -1.8 −1.8
(8+3x)2=(5x+3)2−(4x)2 (8+3x)^2=(5x+3)^2-(4x)^2 (8+3x)2=(5x+3)2−(4x)2
x=? x=\text{?} x=?
−3118 -3\frac{1}{18} −3181
−2.5 -2.5 −2.5
(7+a)(7+a)=(12a+8)2+34a2 (7+a)(7+a)=(\frac{1}{2}a+8)^2+\frac{3}{4}a^2 (7+a)(7+a)=(21a+8)2+43a2
a=? a=\text{?} a=?
−178 -1\frac{7}{8} −187
212 2\frac{1}{2} 221
(7+xy)2=3x2y2+49 (7+xy)^2=3x^2y^2+49 (7+xy)2=3x2y2+49
23y2 \frac{2}{3y^2} 3y22
7y2 \frac{7}{y^2} y27
(5−3a)2+a=(a+1)2−31a (5-3a)^2+a=(a+1)^2-31a (5−3a)2+a=(a+1)2−31a
No hay solución