Simplifica la expresión dada:(a+c)(4+c)
Simplificamos la expresión dada, abrimos paréntesis usando la propiedad distributiva extendida:
(x+y)(t+d)=xt+xd+yt+ydTengamos en cuenta que en la forma de la fórmula de la propiedad distributiva mencionada anteriormente, asumimos por defecto que la operación entre los términos dentro del paréntesis es una operación de suma, por lo tanto, por supuesto, no olvidaremos que el signo del coeficiente del término es parte inseparable de él, también aplicaremos las reglas de multiplicación de signos y así podremos presentar cualquier expresión entre paréntesis, que se abre mediante la fórmula anterior, primero, como una expresión en la que hay una operación de suma entre todos los términos, en esta expresión, como queda claro, para todos los términos el coeficiente es el signo más, por lo tanto vamos directamente a la apertura del paréntesis,
Comenzamos con la apertura de paréntesis:
(x+c)(4+c)x⋅4+x⋅c+c⋅4+c⋅c4x+xc+4c+c2Para simplificar la expresión anterior, utilizamos la ley de potencias para la multiplicación entre términos con bases idénticas:
am⋅an=am+n
En el siguiente paso entran términos semejantes, definiremos términos semejantes como términos en los que las incógnitas(cada una por separado), en este caso, x y c, tienen potencias idénticas (en ausencia de una de las incógnitas de la expresión , nos referiremos a su potencia como potencia de cero, esto se debe a que elevando cada número a la potencia de cero da como resultado 1), además usaremos la propiedad sustitutiva, además ordenaremos la expresión de mayor a la potencia más baja de izquierda a derecha (nos referiremos al número libre como la potencia de cero),
Tengamos en cuenta que en la expresión que obtuvimos en el último paso hay cuatro términos diferentes, esto se debe a que no hay ni siquiera un par de términos en los que las incógnitas (diferentes) tengan la misma potencia, además ya está ordenado según potencia como arriba, por lo tanto la expresión que ya hemos obtenido es la expresión final y más simplificada:4x+xc+4c+c2c2+xc+4x+4cResaltamos a los diferentes términos mediante colores y, como se enfatizó antes, nos aseguramos de que el signo principal del término sea una parte integral del mismo.
Utilizamos la propiedad sustitutiva por la multiplicación para notar que la respuesta correcta es la opción A.
4x+cx+4c+c2