Cuando nos encontramos con una raíz que está en la totalidad del producto, podemos descomponer los factores de los productos y dejar una raíz separada para cada uno de ellos. No olvidemos dejar el signo de multiplicación entre los factores que hemos sacado.
4⋅400 Según la regla de la raíz de un producto, podemos descomponer los factores y dejar la raíz de cada factor por separado, manteniendo la operación de multiplicación entre ellos: Lo descompondremos y obtendremos: 4⋅400 2×20=40
Si te interesa este artículo también te pueden interesar los siguientes artículos:
En la página web deTutorelaencontrarás una variedad de artículos sobre matemáticas.
Ejemplos y ejercicios con soluciones de la raíz de un producto
Ejercicio #1
Resuelva el siguiente ejercicio:
16⋅1=
Solución en video
Solución Paso a Paso
Comencemos recordando cómo definir una raíz como una potencia:
na=an1
A continuación, recordaremos que elevar 1 a cualquier potencia siempre dará como resultado 1, incluso la potencia de un medio de la raíz cuadrada.
En otras palabras:
16⋅1=↓16⋅21=16⋅121=16⋅1=16=4Por lo tanto, la respuesta correcta es la opción D.
Respuesta
4
Ejercicio #2
Resuelva el siguiente ejercicio:
1⋅2=
Solución en video
Solución Paso a Paso
Comencemos recordando cómo definir una raíz cuadrada como una potencia:
na=an1
Luego, recordemos que elevar 1 a cualquier potencia siempre nos da 1, incluso la potencia de un medio que obtuvimos al convertir la raíz cuadrada.
En otras palabras:
1⋅2=↓21⋅2=121⋅2=1⋅2=2Por lo tanto, la respuesta correcta es la opción a.
Respuesta
2
Ejercicio #3
Resuelva el siguiente ejercicio:
100⋅25=
Solución en video
Solución Paso a Paso
Podemos simplificar la expresión sin usar las leyes de los exponentes, porque la expresión tiene raíces cuadradas conocidas, así que simplifiquemos la expresión y luego realicemos la multiplicación:
100⋅25=10⋅5=50Por lo tanto, la respuesta correcta es la opción D.
Respuesta
50
Ejercicio #4
Resuelva el siguiente ejercicio:
10⋅3=
Solución en video
Solución Paso a Paso
Para simplificar la expresión dada, usamos dos leyes de exponentes:
A. Definir la raíz como un exponente:
na=an1B. La ley de exponentes para dividir potencias con la misma base (en la dirección opuesta):
xn⋅yn=(x⋅y)n
Empecemos usando la ley de exponentes mostrada en A:
10⋅3=↓1021⋅321=Continuamos, ya que tenemos una multiplicación entre dos términos con exponentes iguales, podemos usar la ley de exponentes mostrada en B y combinarlos bajo la misma base que está elevada al mismo exponente:
1021⋅321=(10⋅3)21=3021=30En los últimos pasos, realizamos la multiplicación de las bases y usamos la definición de la raíz como exponente mostrada anteriormente en A(en la dirección opuesta)para volver a la notación de raíz.
Por lo tanto, la respuesta correcta es B.
Respuesta
30
Ejercicio #5
Resuelva el siguiente ejercicio:
25⋅4=
Solución en video
Solución Paso a Paso
Podemos simplificar la expresión directamente sin usar las leyes de los exponentes, ya que la expresión tiene raíces cuadradas conocidas, así que simplifiquemos la expresión y luego realicemos la multiplicación:
25⋅4=5⋅2=10Por lo tanto, la respuesta correcta es la opción C.
Respuesta
10
¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy