Los números y tienen unas características especiales al momento de realizar con ellos algunas operaciones básicas de sumas, restas, multiplicaciones y divisiones, incluso cálculos combinados.
En este artículo aprenderemos cuáles son.

Los números y tienen unas características especiales al momento de realizar con ellos algunas operaciones básicas de sumas, restas, multiplicaciones y divisiones, incluso cálculos combinados.
En este artículo aprenderemos cuáles son.
En la suma, cuando agregamos o sumamos cero a algún número, este se mantendrá invariable porque, de hecho, no se le ha agregado ningún valor.
Lo mismo ocurre cuando le restamos a algún número; el número no cambia debido a que no le estamos quitando nada.
En las multiplicaciones, el resultado siempre será .
Podemos resumir la multiplicación por de la siguiente manera (siendo a cualquier número positivo o negativo).
y también
Incluso al dividir por otro número, el resultado siempre será
y también (Suponiendo que (a) no es )
En las operaciones de suma y resta, el uno le suma o resta una unidad a la cifra.
,
,
,
En las multiplicaciones, cuando un número se multiplica por el no cambiara.
Algo muy similar ocurre con la división, si dividimos un número por uno, el número se mantiene invariante.
\( 7\times1+\frac{1}{2}= \)
\( \frac{6}{3}\times1= \)
\( (3\times5-15\times1)+3-2= \)
Después de revisar las características del cero y uno, las utilizaremos para resolver ejercicios combinados, en donde además utilizaremos jerarquía de operaciones.
Calcula .
Solución.
Resolvemos la división dentro del primer paréntesis y la potencia dentro del segundo paréntesis:
Dentro del primer paréntesis realizamos las sumas y restas de izquierda a derecha, y en el segundo paréntesis, resolvemos la multiplicación:
Resolvemos las restas:
Hemos obtenido una multiplicación de un número por uno, por lo tanto, el resultado es:
Si te interesa este artículo, también te pueden interesar los siguientes artículos:
En la página web de Tutorela encontrarás una variedad de artículos sobre matemáticas.
\( (5\times4-10\times2)\times(3-5)= \)
\( (5+4-3)^2:(5\times2-10\times1)= \)
Resuelva el siguiente ejercicio:
\( 12+3\cdot0= \)
Son números que tienen características muy importantes cuando realizamos operaciones con ellos. Al uno se le conoce como neutro multiplicativo, y al cero como neutro aditivo, debido a que los números permanecen invariantes cuando los multiplicas por uno o les sumas cero.
El cero en matemáticas es utilizado para representar el valor nulo o la ausencia.
Resuelva el siguiente ejercicio:
\( 2+0:3= \)
\( \frac{25+25}{10}= \)
\( 0:7+1= \)
El cero es un número entero, no es ni positivo ni negativo y se utiliza para representar el valor nulo o como origen en diversas situaciones.
La división entre cero no está definida.
De acuerdo con el orden de las operaciones, primero multiplicamos y luego sumamos:
12
Según el orden de las operaciones, primero resolvemos la expresión entre paréntesis:
Ahora multiplicamos:
40
Resuelva el siguiente ejercicio:
De acuerdo con el orden de las operaciones, primero multiplicamos y luego sumamos:
Este concepto básico es la jerarquía de las operaciones, que establece que la multiplicación y la división se realizan antes que la suma y la resta, y que las operaciones dentro de los paréntesis tienen prioridad sobre todas ellas,
en este contexto se establece una división entre dos números negativos, notemos que los negativos a la izquierda indican una fortaleza, por lo tanto, al seguir la jerarquía de las operaciones mencionada anteriormente, primero simplificaremos la división que está dentro de los paréntesis, y a medida que avanzamos obtendremos el resultado que se deriva de simplificar la división que está dentro de los paréntesis con fortaleza dada y en el paso final dividiremos el resultado que se obtiene del resultado de simplificar la división que está dentro de los paréntesis,
Si seguimos este proceso en la división que está dentro de los paréntesis a la izquierda, donde realizamos las operaciones de multiplicación y división, a medida que avanzamos en fortaleza, a diferencia de simplificar la división que está dentro de los paréntesis a la derecha, esto resulta en seguir la jerarquía de las operaciones mencionada, dado que la multiplicación tiene prioridad sobre la división, primero realizaremos las operaciones de multiplicación que están dentro de los paréntesis y a medida que avanzamos realizaremos la operación de división:
Destacamos quela razón por la cual el resultado de las operaciones que están dentro de la división a la izquierda es positivo, este resultado lo llevamos a los paréntesis, estos los elevamos al paso siguiente en fortaleza, esto es importante recordar quela elevación de cualquier número (positivo o negativo) en fortaleza par da como resultado un número positivo,
Por lo tanto, en la última división que recibimos de establecer una operación de división en el número 0, esta operación es conocida comouna operación matemática indefinida (y esa es la razón simple por la cual no se divide nunca un número entre 0) por lo tanto, la división dada da como resultadoun valor que no está definido, comúnmente se denota este valor como"conjunto vacío" y se usa el símbolo :
En conclusión:
Por lo tanto, la respuesta correcta es la respuesta A.
No hay solución
De acuerdo con las reglas del orden de operaciones, primero dividimos y luego sumamos:
\( 12+1+0= \)
\( 0+0.2+0.6= \)
\( \frac{1}{2}+0+\frac{1}{2}= \)