Los números 0 y 1 en las operaciones

🏆Ejercicios de casos especiales (0 y 1, inverso, linea de fracción)

Los números 0 0 y 1 1 tienen unas características especiales al momento de realizar con ellos algunas operaciones básicas de sumas, restas, multiplicaciones y divisiones, incluso cálculos combinados.

En este artículo aprenderemos cuáles son.

Los números  0  y  1

Ir a prácticas

¡Pruébate en casos especiales (0 y 1, inverso, linea de fracción)!

einstein

\( 8\times(5\times1)= \)

Quiz y otros ejercicios

Características del 0

En la suma, cuando agregamos o sumamos cero a algún número, este se mantendrá invariable porque, de hecho, no se le ha agregado ningún valor.
5+0=5 5+0=5


Lo mismo ocurre cuando le restamos 0 0 a algún número; el número no cambia debido a que no le estamos quitando nada.
 50=5\ 5-0=5


En las multiplicaciones, el resultado siempre será 0 0 .
 50=0\ 5 \cdot 0=0


Podemos resumir la multiplicación por 0 0 de la siguiente manera (siendo a cualquier número positivo o negativo).


 0a=0\ 0\cdot a=0 y también   a0=0\ a\cdot 0=0

Incluso al dividir 0 0 por otro número, el resultado siempre será 0 0
 0:5=0\ 0:5=0

 0:12=0\ 0:\frac{1}{2}=0

 0:1000=0\ 0:1000=0


 0a=0\ {0 \over a}=0 y también  0:a=0\ 0: a=0 (Suponiendo que (a) no es 0 0 )


Características del 1

En las operaciones de suma y resta, el uno le suma o resta una unidad a la cifra.

 5+1=6\ 5+1=6, 51=4\ 5-1=4

 1+1=2\ 1+1=2, 11=0\ 1-1=0

 10+1=11\ 10+1=11, 101=9\ 10-1=9


En las multiplicaciones, cuando un número se multiplica por el  1\ 1 no cambiara.

 51=5\ 5 \cdot 1=5

 2531=253\ 253 \cdot 1=253

 10.0001=10.000\ 10.000 \cdot 1=10.000


Algo muy similar ocurre con la división, si dividimos un número por uno, el número se mantiene invariante.

 5:1=5\ 5:1=5

 200:1=200\ 200:1=200

 1.000.000:1=1.000.000\ 1.000.000:1=1.000.000


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Ejemplo con operaciones combinadas

Después de revisar las características del cero y uno, las utilizaremos para resolver ejercicios combinados, en donde además utilizaremos jerarquía de operaciones.


Ejemplo 1

Calcula (10:2+36)(322×4) \left(10:2+3-6\right)\left(3^2-2×4\right) .

Solución.

Resolvemos la división dentro del primer paréntesis y la potencia dentro del segundo paréntesis:

(5+36)(92×4) \left(5+3-6\right)\left(9-2×4\right)

Dentro del primer paréntesis realizamos las sumas y restas de izquierda a derecha, y en el segundo paréntesis, resolvemos la multiplicación:

(86)(98) \left(8-6\right)\left(9-8\right)

Resolvemos las restas:

(2)(1) \left(2\right)\left(1\right)

Hemos obtenido una multiplicación de un número por uno, por lo tanto, el resultado es:

2 2


Si te interesa este artículo, también te pueden interesar los siguientes artículos:

En la página web de Tutorela encontrarás una variedad de artículos sobre matemáticas.


¿Sabes cuál es la respuesta?

Preguntas de repaso

¿Qué es el 1 y el 0?

Son números que tienen características muy importantes cuando realizamos operaciones con ellos. Al uno se le conoce como neutro multiplicativo, y al cero como neutro aditivo, debido a que los números permanecen invariantes cuando los multiplicas por uno o les sumas cero.


¿Qué significa 0 en matemáticas?

El cero en matemáticas es utilizado para representar el valor nulo o la ausencia.


Comprueba que lo has entendido

¿Qué tipo de número es el 0?

El cero es un número entero, no es ni positivo ni negativo y se utiliza para representar el valor nulo o como origen en diversas situaciones.


¿Cuánto es un número dividido entre 0?

La división entre cero no está definida.


Ejemplos y ejercicios con soluciones de los números 0 y 1 en las operaciones

Ejercicio #1

8×(5×1)= 8\times(5\times1)=

Solución en video

Solución Paso a Paso

Según el orden de las operaciones, primero resolvemos la expresión entre paréntesis:

5×1=5 5\times1=5

Ahora multiplicamos:

8×5=40 8\times5=40

Respuesta

40

Ejercicio #2

(5×410×2)×(35)= (5\times4-10\times2)\times(3-5)=

Solución en video

Solución Paso a Paso

La simplificación de esta expresión dentro del paréntesis sigue el orden de operaciones que indica que la multiplicación y división se realizan antes que la suma y resta, y si hay paréntesis, estos tienen prioridad sobre todo,

en la simplificación dada se establece una multiplicación entre dos pares de términos, por lo tanto simplificamos los términos que están dentro de cada par de términos por separado,

Comenzamos simplificando el término que está dentro del paréntesis izquierdo, esto se hace de acuerdo al orden de operaciones mencionado, dado que la multiplicación se realiza antes que la resta, se realiza primero la multiplicación en este término y luego se lleva a cabo la operación de resta en los términos de este, en contraste simplificamos el término que está en el paréntesis derecho y se lleva a cabo la operación de resta en él:

(54102)(35)=(2020)(2)=0(2)= (5\cdot4-10\cdot2)\cdot(3-5)= \\ (20-20)\cdot(-2)= \\ 0\cdot(-2)=\\ Nos queda si así realizamos la última multiplicación que se indica, es la multiplicación que se realiza entre los términos dentro de los paréntesis en el término original, se realiza mientras recordamos que multiplicar cualquier número por 0 dará como resultado 0:

0(2)=0 0\cdot(-2)=\\ 0 Por lo tanto, la respuesta correcta es la respuesta d'.

Respuesta

0 0

Ejercicio #3

Resuelva el siguiente ejercicio:

12+30= 12+3\cdot0=

Solución Paso a Paso

De acuerdo con el orden de las operaciones, primero multiplicamos y luego sumamos:

12+(30)= 12+(3\cdot0)=

3×0=0 3\times0=0

12+0=12 12+0=12

Respuesta

12 12

Ejercicio #4

Resuelva el siguiente ejercicio:

2+0:3= 2+0:3=

Solución Paso a Paso

De acuerdo con las reglas del orden de operaciones, primero dividimos y luego sumamos:

2+(0:3)= 2+(0:3)=

0:3=0 0:3=0

2+0=2 2+0=2

Respuesta

2 2

Ejercicio #5

0:7+1= 0:7+1=

Solución en video

Solución Paso a Paso

De acuerdo con las reglas del orden de operaciones, primero dividimos y luego sumamos:

0:7=0 0:7=0

0+1=1 0+1=1

Respuesta

1 1

¿Crees que podrás resolverlo?
Ir a prácticas