La propiedad distributiva para alumnos de 1.º de ESO

🏆Ejercicios de propiedad distributiva para séptimo grado

Al resolver ejercicios algebraicos, podemos ayudarnos de algunas reglas aritméticas muy útiles. Entre ellas se encuentran, entre otras, la propiedad distributiva, la asociativa y la conmutativa. Estas reglas se aprenden a lo largo de la etapa educativa con distinto grado de complejidad dependiendo del nivel exigido en cada curso. En este artículo nos centraremos en la propiedad distributiva según las exigencias del currículo de 1.º de ESO, estudiaremos qué es y también trataremos brevemente la propiedad asociativa y la conmutativa.

¿Qué es la propiedad distributiva?

La propiedad distributiva nos ayuda a resolver ejercicios de multiplicación, en los cuales, los factores se descomponen en sumas y restas. También podemos utilizar dicha propiedad en ejercicios de división, descomponiendo el dividendo (o numerador) en sumas o restas. Gracias a esto podemos trabajar con números más pequeños y así simplificar la operación.

Veamos algunos ejemplos:

  • 6×26=6×(20+6)=120+36=1566 \times 26 = 6 \times (20 + 6) = 120 + 36 = 156
  • 7×32=7×(30+2)=210+14=2247 \times 32 = 7 \times (30 + 2) = 210 + 14 = 224
  • 104:4=(100+4):4=100:4+4:4=25+1=26104:4 = (100+4):4 = 100:4 + 4:4 = 25+1 = 26

Si nos fijamos en los ejercicios de ejemplo, veremos que de hecho hemos descompuesto el número más grande en varios más pequeños cuando la operación es una multiplicación, y hemos descompuesto el numerador cuando la operación es una división. Por un lado, su valor no se ha alterado matemáticamente, pero, por otro, nos ha permitido simplificar el ejercicio a la hora de calcularlo.

Si quisiéramos expresar la propiedad distributiva de manera general, obtendríamos lo siguiente:

Z×(X+Y)=ZX+ZYZ \times (X + Y) = ZX + ZY

Z×(XY)=ZXZYZ \times (X - Y) = ZX - ZY

Z×(X+Y)=ZX+ZY


Ir a prácticas

¡Pruébate en propiedad distributiva para séptimo grado!

einstein

Resuelve el ejercicio:

84:4=

Quiz y otros ejercicios

La propiedad distributiva compuesta

La propiedad distributiva compuesta es aquella en la cual ambos factores están expresados como sumas y restas.

Veamos algunos ejemplos:

  • (X+2)×(X+3)=(X + 2) \times (X + 3) =
    X2+3X+2X+6=X2+5X+6X² + 3X + 2X + 6 = X² + 5X + 6
     
  • (X4)×(X3)=(X - 4) \times (X - 3) =
    X23X4X+12=X27X+12X² - 3X - 4X + 12 = X² - 7X + 12

Ahora explicaremos las operaciones realizadas en cada uno de los ejemplos: Primero multiplicamos el primer miembro del primer paréntesis por el primer miembro del segundo paréntesis. Después multiplicamos el primer miembro del primer paréntesis por el segundo miembro del segundo paréntesis. A continuación, pasamos al segundo miembro del primer paréntesis y lo multiplicamos por el primer miembro del segundo paréntesis y después por el segundo miembro del segundo paréntesis. Debemos tener en cuenta los símbolos de suma y resta que preceden a cada número y realizar cada multiplicación utilizando la ley de los signos.

Si queremos expresar la ley de propiedad distributiva de una manera más general, obtenemos:

(Z+T)×(X+Y)=ZX+ZY+TX+TY(Z + T) \times (X + Y) = ZX + ZY + TX + TY

(ZT)×(XY)=ZXZYTX+TY(Z - T) \times (X - Y) = ZX - ZY - TX + TY


La propiedad distributiva para principiantes

El primer acercamiento que los estudiantes tienen con la propiedad distributiva se presenta únicamente con números (sin variables de cualquier tipo). Su propósito es enseñarles el concepto de la descomposición de un número en varios mediante la suma o resta para simplificar el cálculo, especialmente cuando el ejercicio encierra números grandes.

Por ejemplo: 

3×102=3×(100+2)=300+6=306 3\times 102=3\times(100+2)=300+6=306

7×96=7×(1004)=70028=672 7\times 96=7\times(100-4)=700-28=672

En primaria, los alumnos ya dominan sumas y restas largas, pero aún no tienen tanta destreza al multiplicar números grandes y la propiedad distributiva les permite resolver estos problemas mediante multiplicaciones más sencillas.


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

La propiedad distributiva en la ESO

En 1.º de ESO, la propiedad distributiva sube un nivel y empieza a combinar no solo números, sino también ecuaciones y variables. En este grado, los alumnos toman contacto con el términovariante, así como con las potencias de segundo grado o superiores. 

Por ejemplo: 

  • (X+5)×(X+6)=(X + 5) \times (X + 6) =
    X2+6X+5X+30=X2+11X+30X² + 6X + 5X+ 30 = X² + 11X + 30
     
  • (X7)×(X8)=(X- 7) \times (X- 8) =
    X28X7X+56=X215X+56X² - 8X - 7X + 56 = X² - 15X + 56

Otras reglas

Como ya hemos dicho, existen otras reglas que nos ayudan a simplificar los ejercicios algebraicos. En este apartado veremos brevemente dos de ellas: la propiedad asociativa y la divisibilidad.


¿Sabes cuál es la respuesta?

La propiedad asociativa

La propiedad asociativa nos permite resolver ejercicios de suma o multiplicaciones en donde aparecen tres elementos o más.

Veamos algunos ejemplos fáciles en los que aplicamos la propiedad asociativa: 

  • (10+2)+8=(10 + 2) + 8 =
    10+(2+8)=10+2+8=2010 + (2 + 8) = 10 + 2 + 8 = 20
     
  • 2×(3×6)=2 \times (3 \times 6) =
    (2×3)×6=2×3×6=36(2 \times 3) \times 6 = 2 \times 3 \times 6 = 36

Para ampliar conocimientos sobre la propiedad asociativa, puedes leer el artículo específico al respecto: La Propiedad Asociativa.

La propiedad conmutativa

Al igual que la propiedad asociativa, la propiedad conmutativa solo puede aplicarse en ejercicios que contienen sumas y multiplicaciones. Gracias a esta propiedad, conmutamos el orden de las operaciones de multiplicación y suma, algo que no afecta en absoluto al resultado final.

Veamos algunos ejemplos: 

  • 2+6=6+2=8 2 + 6 = 6 + 2 = 8
  • 3×4=4×3=123 \times 4 = 4 \times 3 = 12
  • Para ampliar conocimientos sobre la propiedad asociativa, puedes leer el artículo específico al respecto: " La Propiedad Conmutativa".

Comprueba que lo has entendido

Ejercicios de la propiedad distributiva para 1.º de ESO

Ejercicio 1

Aplica la propiedad distributiva y resuelve estos cinco problemas: 

  • 294:3= 294:3=
  • 105×4= 105\times 4=
  • 505:5= 505:5=
  • 207×5= 207\times 5=
  • 168:8= 168:8=

Soluciones:

  • 294:3=(3006):3=300:36:3=1002=98 294:3=(300-6):3=300:3-6:3=100-2=98
  • 105×4=(100+5)×4=100×4+5×4=400+20=420 105\times 4=(100+5)\times 4=100\times 4+5\times 4=400+20=420
  • 505:5=(500+5):5=500:5+5:5=100+1=101 505:5=(500+5):5=500:5+5:5=100+1=101
  • 207×5=(200+7)×5=200×5+7×5=1000+35=1035 207\times 5=(200+7)\times 5=200\times 5+7\times 5=1000+35=1035
  • 168:8=(160+8):8=160:8+8:8=20+1=21 168:8=(160+8):8=160:8+8:8=20+1=21

Ejercicio 2

Se ha dividido a 351 alumnos de un instituto en nueve grupos iguales.  

¿Cuántos alumnos hay en cada grupo?

Aplica la propiedad distributiva para resolver el problema.

Solución: 

Comenzamos expresando numéricamente el problema:

351:9=(3609):9=360:99:9=401=39 351:9=(360-9):9=360:9-9:9=40-1=39

Respuesta:

En cada grupo hay 39 alumnos. 


¿Crees que podrás resolverlo?

Ejercicio 3

Dani compró 15 cajas. En cada una había 9 caramelos.

¿Cuántos caramelos en total compró Dani?

Aplica la propiedad distributiva para resolver el problema.

Solución: 

Comenzamos expresando numéricamente el problema:

15×9=(10+5)×9=10×9+5×9=90+45=135 15\times9=(10+5)\times9=10\times9+5\times9=90+45=135

Respuesta:

Dani compró 135 caramelos.


Ejercicio 4

Isabel ha empaquetado 246 cuadernos en 6 paquetes iguales. 

¿Cuántos cuadernos ha puesto Isabel en cada paquete?

Aplica la propiedad distributiva para resolver el problema.

Solución: 

Comenzamos expresando numéricamente el problema:

246:6=(240+6):6=240:6+6:6=40+1=41 246:6=(240+6):6=240:6+6:6=40+1=41

Respuesta:

Isabel ha puesto 41 cuadernos en cada paquete.


Comprueba tu conocimiento

Ejercicio 5

Mi madre tenía 894 euros. Repartió el dinero de manera equitativa entre sus tres hijos.  

¿Cuánto dinero recibió cada hijo?

Aplica la propiedad distributiva para resolver el problema.

Solución: 

Comenzamos expresando numéricamente el problema:

894:3=(9006):3=900:36:3=3002=298 894:3=(900-6):3=900:3-6:3=300-2=298

Respuesta:

Cada hijo recibió 298 euros. 


Ejercicio 6

Tarea:

Resolver el siguiente ejercicio

93:3=? 93:3=\text{?}

Solución:

Distribuimos el número 93 en 4 partes para facilitarnos su división por 3.

Por ejemplo 30:3=10 30:3=10

93:3=? 93:3=\text{?}

(30+30+30+3):3= (30+30+30+3):3=

+30:3=10 +30:3=10

+30:3=10 +30:3=10

+30:3=10 +30:3=10

+3:3=1 +3:3=1

93:3=31 93:3=31

Por ejemplo 30:3=10 30:3=10

Después sumaremos los resultados y obtendremos que:

93:3=31 93:3=31

Respuesta:

31 31


¿Sabes cuál es la respuesta?

Ejercicio 7

Tarea:

Resolver el siguiente ejercicio

=90:5 =90:5

Solución:

Distribuimos el número 90 en 3 factores

(50,20,20)

90=5+20+20 90=5-+20+20

Luego dividimos cada uno de ellos por 5 y sumamos los tres resultados.

+50:5=10 +50:5=10

+20:5=4 +20:5=4

+20:5=4 +20:5=4

Así obtenemos que: 90:5=1+4+4=18 90:5=1-+4+4=18

Respuesta: 18 18


Ejercicio 8

Tarea:

Resolver el ejercicio

=72:18 =72:18

Solución:

Distribuimos el número 72 en dos números (36+36) \left(36+36\right) y después dividimos cada uno de ellos en 18.

72:18= 72:18=

(36+36):18= (36+36):18=

+36:18=2 +36:18=2

+36:18=2 +36:18=2

72:18=4 72:18=4

4 4

Respuesta:

4 4


Comprueba que lo has entendido

Ejercicio 9

Tarea:

(40+70+357)×9= \left(40+70+35−7\right)×9=

Solución:

(40+70+357)×9= \left(40+70+35−7\right)×9=

40×9+70×9+35×97×9= 40\times9+70\times9+35\times9-7\times9=

=360+630+(30+5)963 =360+630+(30+5)9-63

=360+630+270+4563=1242 =360+630+270+45-63=1242

Respuesta:

1242 1242


Ejercicio 10

Tarea:

(35+4)×(10+5)= \left(35+4\right)×\left(10+5\right)=

Solución:

(35+4)(10+5)=35×10+35×5+4×10+4×5(35+4)(10+5)=35\times10+35\times5+4\times10+4\times5

=350+175+40+20=585 =350+175+40+20=585

Respuesta:

585 585


¿Crees que podrás resolverlo?

Ejercicio 11

Tarea:

(7x+3)×(10+4)= \left(7x+3\right)×\left(10+4\right)=

Solución:

(7X+3)(10+4)=7X×10+7X×4+3×10+3×4(7X+3)(10+4)=7X\times10+7X\times4+3\times10+3\times4

=70X+28X+30+12=98X+42=238 =70X+28X+30+12=98X+42=238 ,42 -42

98X=196 98X=196 ,:98 :98

X=19698=2 X=\frac{196}{98}=2

Respuesta:

2 2


Ejercicios para practicar la propiedad distributiva

  • 187×(85)=187\times (8-5)=
  • 23×(12+05)={2\over3}\times (12+0-5)=
  • 5×(212+116+34)=5\times (2{1\over2}+1{1\over6}+{3\over4})=
  • (10+5+18)×4=(10+5+18)\times 4=
  • (5.50.8)×5=(5.5-0.8)\times 5=
  • 340:(127)=340:(12-7)=
  • (294):5=(29-4):5=
  • 51:(6+15)={5\over1}:(6+1-5)=
  • 18:(5+7+4)=18:(5+7+4)=
  • (1713):4=({1\over7}-{1\over3}):4=
  • 97×12=97\times 12=
  • 3×36=3\times 36=
  • 120:97=120:97=
  • 8:12=8:{1\over2}=
  • 151×23=151\times 23=

Comprueba tu conocimiento

Preguntas y respuestas sobre la propiedad distributiva

¿Cuál es la propiedad distributiva?

La propiedad distributiva relaciona las operaciones de suma y resta con la multiplicación. Como su nombre lo indica se distribuye la multiplicación entre cada elemento que conforma cada uno de los factores.

¿Cómo se utiliza la propiedad distributiva?

La propiedad distributiva se puede utilizar en ejercicio de multiplicación en la que uno de los factores es un número grande. Utilizando la suma y resta se descompone el número en otros más pequeños y se procede a distribuir la multiplicación.

Ejemplo

  • 20×8×7=20+8×7=20×7+8×7=140+56=196 20 \times 8\times 7=20+8\times 7=20\times 7+8\times 7=140+56=196

¿Cómo utilizar la propiedad distributiva en la división?

Para utilizar la propiedad distributiva cuando hay división, procedemos a descomponer el dividendo (o denominador) en números más pequeños utilizando las operaciones de suma y resta. Posteriormente se distribuye la división,

Ejemplo

  • 150:6=120+30:6=120:6+30:6=20+5=25 150:6=120+30:6=120:6+30:6=20+5=25

¿Sabes cuál es la respuesta?

ejemplos con soluciones para Propiedad distributiva para séptimo grado

Ejercicio #1

94+72= 94+72=

Solución en video

Solución Paso a Paso

Para facilitar el proceso de resolución, descomponemos a 94 y 72 en números más pequeños. Preferiblemente números redondos

Obtenemos:

90+4+70+2= 90+4+70+2=

Mediante la propiedad asociativa, ordenamos el ejercicio de un manera más cómoda:

90+70+4+2= 90+70+4+2=

Resolvemos el ejercicio de la siguiente manera, primero los números redondos y después los números pequeños.

90+70=160 90+70=160

4+2=6 4+2=6

Ahora obtenemos el ejercicio:

160+6=166 160+6=166

Respuesta

166

Ejercicio #2

6336= 63-36=

Solución en video

Solución Paso a Paso

Para resolver la consigna, primero usaremos la propiedad distributiva en los dos números:

(60+3)-(30+6)

Ahora, usaremos la propiedad sustitutiva para ordenar el ejercicio de la manera que nos sea más conveniente para resolver:

60-30+3-6

Es importante prestar atención que cuando abrimos los segundos paréntesis, el signo menos se movió a los dos números dentro.

30-3 = 

27

Respuesta

27

Ejercicio #3

14343= 143-43=

Solución en video

Solución Paso a Paso

Usamos la propiedad distributiva y separamos el número 143 en una suma entre 100 y 43.

La propiedad distributiva nos permite separa, es decir, dividir un número en dos o más números. En realidad, esto nos permite trabajar con números más pequeños y simplificar la operación.

(100+43)43= (100+43)-43=

Actuamos según el orden de operaciones aritméticas.

Puedes quitar los paréntesis y realizar las operaciones de suma y resta sin ningún orden en particular porque solo hay operaciones de suma y resta en la ecuación.

100+4343=100+0=100 100+43-43=100+0=100

Por lo tanto la respuesta es la opción C - 100.

Y ahora veremos la solución del ejercicio de forma centralizada:

14343=(100+43)43=100+4343=100+0=100 143-43= (100+43)-43= 100+43-43=100+0=100

Respuesta

100

Ejercicio #4

133+30= 133+30=

Solución en video

Solución Paso a Paso

Para resolver la pregunta, primero usamos la propiedad distributiva para el 133:

(100+33)+30= (100+33)+30=

Ahora usamos la propiedad distributiva para el 33:

100+30+3+30= 100+30+3+30=

Ordenamos el ejercicio de manera más cómoda:

100+30+30+3= 100+30+30+3=

Resolvemos el ejercicio del medio:

30+30=60 30+30=60

Ahora obtenemos el ejercicio:

100+60+3=163 100+60+3=163

Respuesta

163

Ejercicio #5

14070= 140-70=

Solución en video

Solución Paso a Paso

Para facilitar el proceso de resolución, usamos la propiedad distributiva para el 140:

100+4070= 100+40-70=

Ahora ordenamos el ejercicio mediante la propiedad sustitutiva de una manera más conveniente:

10070+40= 100-70+40=

Resolvemos el ejercicio de izquierda a derecha:

10070=30 100-70=30

30+40=70 30+40=70

Respuesta

70

Ir a prácticas