Regularidades

🏆Ejercicios de propiedades

¿Qué son las regularidades para niños?

Si existe alguna relación entre los elementos de un conjunto, las regularidades serían la norma que los relaciona. Se puede formular la regularidad, es decir la norma y, de esta manera, encontrar el valor de cada uno de los elementos del conjunto según el puesto que ocupa. 

Por ejemplo:

2,4,8,16,32 2,4,8,16,32

1- relación entre los elementos de un conjunto

Formas para encontrar regularidades

Hay varias maneras para encontrar regularidades. Una de ellas es observar la secuencia de elementos y el cambio que van teniendo. Otra manera es anotar parámetros en una tabla. 

Una regla puede formularse utilizando sumas, restas, multiplicación o división, o bien, varias de estas operaciones juntas

Veamos un ejemplo: 

A continuación, veamos una serie de elementos: 3,7,11,15,19 3,7,11,15,19

Si observamos con detenimiento los números nos daremos cuenta de que hay cierta regla de formación entre ellos y que, para llegar de un número al siguiente siempre es necesario añadir 4 4

Es decir, el primer elemento es el 3 3 . Si le agregamos 4 4 obtendremos el segundo elemento que es el 7 7 , si a éste, otra vez, le agregamos 4 4 llegaremos al tercer elemento que es el 11 11 y así sucesivamente. 

En otras palabras, si nos preguntamos cuál es la regularidad, es +4 +4


Ir a prácticas

¡Pruébate en propiedades!

einstein

12 ☐ 10 ☐ 8 7 6 5 4 3 2 1

¿Qué números se deben poner en los cuadrados para obtener la propiedad constante?

Quiz y otros ejercicios

Ejemplos de diferentes patrones de formación

Ejemplo No 1

Observa los siguientes conjuntos numéricos y determina si hay alguna regularidad. Si la hay, especifica cuál es.

A. 1,2,3,4,5,6 1,2,3,4,5,6

B. 9,7,3,8,5,0 9,7,3,8,5,0

C. 9,11,13,15,17 9,11,13,15,17

D. 1,100,98,85,64 1,100,98,85,64

E. 10,9,8,7,6 10,9,8,7,6

Solución:

A. Si observamos esta secuencia, veremos que cada número subsiguiente es mayor que el que lo precede en 1. 1. Es decir, realmente aquí hay cierta regularidad, +1. +1.

B. Si observamos la siguiente secuencia, veremos que no hay ninguna relación entre sus elementos, por lo tanto, aquí no hay regularidades.

C. Si observamos esta secuencia, veremos que cada número subsiguiente es mayor que el que lo precede en 2. 2. Es decir, realmente aquí hay cierta regularidad, +2 +2 .

D. Si observamos la siguiente secuencia, veremos que no hay ninguna relación entre sus elementos, por lo tanto, aquí no hay regularidades.

E. Si observamos esta secuencia, veremos que cada número subsiguiente es menor que el que lo precede en 1. 1. Es decir, realmente aquí hay cierta regularidad, 1 -1 .

Respuesta: 

A. Hay regularidad, +1 +1

B. No hay regularidades

C. Hay regularidad, +2 +2 ,

D. No hay regularidades

E. Hay regularidad, 1 -1


Ejemplo No 2

Observa los grupos numéricos que se ven a continuación y determina si hay alguna regularidad. Si la hay, especifica cuál es y descubre los dos siguientes términos: 

2,4,8,16,32,64 2,-4,8,-16,32,-64

Solución:

Al observar los números veremos que hay una mezcla de números positivos y negativos, y nos parecerá por un momento que no hay ninguna regularidad. Sin embargo, si lo analizamos un poco mejor, veremos que, a pesar de tener una combinación de positivos y negativos, no se trata de números tirados al azar.

Si primero ignoramos los signos, veremos que cada número subsiguiente equivale al doble del previo. Ahora devolvamos los signos y veamos qué descubrimos, ya que, de hecho, cada subsiguiente se crea multiplicando por 2 -2 al número que lo precede. 

Es decir: 

2×2=4 2\times-2=-4

4×2=8 -4\times-2=8

8×2=16 8\times-2=-16

16×2=32 -16\times-2=32

32×2=64 32\times-2=-64

Por lo tanto, la regularidad que hemos encontrado es, de hecho, ×(2) \times(-2)

Ahora pasemos a la segunda parte del ejercicio y encontremos los dos siguientes elementos de la secuencia.

Lo haremos realizando exactamente la misma operación que acabamos de mostrar: 

64×2=128 -64\times-2=128

128×2=256 128\times-2=-256

Respuesta:

Efectivamente hay regularidad y es ×(2) \times(-2)

Los dos elementos siguientes de la secuencia son: 128 128 y 256 -256 .


Si te interesa este artículo te pueden interesar los siguientes artículos:

En el blog de Tutorela encontrarás una variedad de artículos sobre matemáticas.


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Ejercicios resueltos con diferentes sucesiones

Ejercicio resuelto 1

¿Hay alguna norma válida en la siguiente secuencia de números?

30,26,22,18 30,26,22,18

Solución:

Si, ya que para obtener el número siguiente debemos restar 4 al número anterior.

304=26 30-4=26

264=22 26-4=22

224=18 22-4=18

Respuesta:

Si, restar (4) (4) .


Ejercicio resuelto 2

Describe la norma usando la variable n n .

21,24,27,30 21,24,27,30

Solución:

Para encontrar una fórmula que describa la regularidad utilizamos la fórmula:

an=a1+d(n1) a_n = a_1+d\left(n-1\right)

En donde a1 a_1 corresponde al primer elemento de la sucesión, y d d a la diferencia entre cualesquiera dos números consecutivos.

Colocamos los datos correspondientes en la fórmula:

an=21+3(n1) a_n=21+3\left(n-1\right)

Simplificamos

an=21+3n3 a_n = 21+3n-3

an=3n+18 a_n = 3n+18

Respuesta:

an=3n+18 a_n = 3n+18


¿Sabes cuál es la respuesta?

Ejercicio resuelto 3

En el aula hay 10 10 asientos numerados

Mediante una frecuencia regular.

Completen la progresión de los asientos:

20,18 20,18

16,14 16,14

__ , __

8,6 8,6

2,4 2,4

Solución:

Cada vez restamos 4 4 de los dos lados, por lo tanto:

144=10 14-4=10

164=12 16-4=12

Respuesta:

12,10 12,10


Ejercicio resuelto 4

Describe la regularidad usando la variable n n .

50,75,100 50,75,100

Solución:

Colocamos los datos de acuerdo a la fórmula

an=a1+d(n1) a_n=a1+d\left(n-1\right)

an=50+25(n1) a_n = 50+25(n-1)

an=25n+5025 a_n = 25n+50-25

an=25n+25 a_n = 25n+25

Respuesta:

an=25n+25 a_n = 25n+25


Comprueba que lo has entendido

Ejercicio resuelto 5

Un puñado de matemáticos decidió de antemano una norma regular. Encontraron personas cuya edad coincidía con la norma y las colocaron en la siguiente progresión:

A. 9n+42n2 9n+4-2n-2

B. x2+5nx2+2n2 x^2+5n-x^2+2n-2

C. 7n2 7n-2

D. 9n+4n6n 9n+4-n-6-n

Dibujo:

Ejercicio 5 tres personas

5+7=12 5+7=12

12+7=19 12+7=19

Entonces, ¿hay un 7n 7n en la ecuación de la edad? En posición (la posición aumenta en 1 1 por lo que la edad aumenta en 7 7 )

Veamos el primer producto:

5=7×n+? 5=7\times n+\text{?}

Reemplazamos n=1 n=1

Pasamos a 7 7 a la sección correspondiente

57=? 5-7=?

2=? -2=?

Progresión:

7n2 7n-2

Respuesta:

B. x2+5nx2+2n2=7n2 x^2+5n-x^2+2n-2=7n-2

C. 7n2 7n-2

D. 9n+4n6n=7n2 9n+4-n-6-n=7n-2

Por lo tanto tenemos 3 respuestas correctas puesto que todas son iguales a: 7n2 7n-2


Preguntas de repaso

¿Qué es la regularidad en matemáticas?

Cuando tenemos un conjunto de números ordenados, diremos que existe una regularidad si existe un patrón o regla que relaciones a dichos números.


¿Crees que podrás resolverlo?

¿Cuáles son las regularidades del sistema de numeración?

Existen distintas regularidades, para encontrarlas debemos analizar el conjunto de números y tratar de usar las operaciones de suma, resta, multiplicación o división o algunas combinaciones entre ellas para describir el conjunto.


¿Cuál es la regularidad de las figuras?

Muchas veces tendremos un conjunto de figuras geométricas, y para concentrar alguna regularidad conviene tratar de escribir alguna sucesión numérica que describa a las figuras geométricas.


Comprueba tu conocimiento

ejemplos con soluciones para Propiedades

Ejercicio #1

12 ☐ 10 ☐ 8 7 6 5 4 3 2 1

¿Qué números se deben poner en los cuadrados para obtener la propiedad constante?

Solución en video

Solución Paso a Paso

Es posible ver que entre cada número hay un salto de un número.

Es decir, a cada número se le suma 1 y será el siguiente número:

1+1=2 1+1=2

2+1=3 2+1=3

3+1=4 3+1=4

Etcétera. Por lo tanto, los siguientes números que faltan en la secuencia serán:8+1=9 8+1=9

10+1=11 10+1=11

Respuesta

11 , 9

Ejercicio #2

Observa la siguiente secuencia de números y determina si hay una regla. Si la hay, ¿cuál es?

94,96,98,100,102,104 94,96,98,100,102,104

Solución en video

Solución Paso a Paso

Se puede ver que la diferencia entre cada número es 2.

Es decir, entre cada salto se suma 2 al siguiente número:

94+2=96 94+2=96

96+2=98 96+2=98

98+2=100 98+2=100

Etcétera

Respuesta

+2 +2

Ejercicio #3

La tabla muestra el número de balones contra el número de canchas en la escuela:

246123balonescanchas

.

Completa:

Número de balones ___ del número de canchas

Solución en video

Solución Paso a Paso

Es posible ver que si multiplicamos cada número de la columna de la derecha por 2, obtienes el número de la columna de la izquierda.

Es decir:1×2=2 1\times2=2

2×2=4 2\times2=4

3×2=6 3\times2=6

Por lo tanto, el número de balones es 2 veces mayor que el número de canchas.

Respuesta

2 veces mayor

Ejercicio #4

Dada una fórmula con una propiedad constante que depende den n :

2n+2 2n+2

Halla el elemento que se encuentra en el lugar de 11

Solución en video

Solución Paso a Paso

Calculamos mediante el reemplazo den=11 n=11

2×11+2= 2\times11+2=

Primero resolvemos el ejercicio de multiplicación y luego sumamos 2:

22+2=24 22+2=24

Respuesta

24 24

Ejercicio #5

Dada la serie de ejercicios.

La serie se estructura según la propiedad constante.

Completa el primer ejercicio.

?+? \text{?}+\text{?}

2+4 2+4

3+7 3+7

4+10 4+10

5+13 5+13

Solución en video

Solución Paso a Paso

Prestamos atención a la columna derecha en los ejercicios.

Entre cada número hay un salto de +3:4+3=7 4+3=7

7+3=10 7+3=10

Etcétera.

Ahora prestamos atención a la columna izquierda de los ejercicios.

Entre cada número hay un salto de +1:

2+1=3 2+1=3

3+1=4 3+1=4

Ahora podemos averiguar cuál es el ejercicio que falta:

El dígito de la izquierda será:21=1 2-1=1

El dígito de la derecha será:43=1 4-3=1

Y el ejercicio que falta es:1+1 1+1

Respuesta

1+1 1+1

Ir a prácticas