Criterio de congruencia: Lado, Ángulo, Lado

🏆Ejercicios de lado, ángulo, lado

Estudiaremos los tres criterios principales de congruencia. Éste es el primero de ellos:

Lado, Ángulo, Lado.

Según este teorema, dos triángulos que 2 de sus lados son respectivamente iguales y el ángulo comprendido entre ellos también es igual, serán triángulos congruentes.
Es importante destacar que el ángulo debe encontrarse entre las dos aristas iguales. Este criterio no se podrá aplicar si se tratara de otro ángulo.

ΔABCΔDEF Δ ABC ≅ Δ DEF

imagen 1 Lado, Ángulo, Lado

Para demostrar que 2 triángulos son congruentes podemos utilizar uno de los siguientes postulados:

Ir a prácticas

¡Pruébate en lado, ángulo, lado!

einstein

En el dibujo dado:

AB=CD

\( ∢\text{BAC}=∢\text{DCA} \)

¿Según qué teorema, los triángulos Δ ABC ≅Δ CDA son congruentes?

\( \)AAADDDCCCBBB

Quiz y otros ejercicios

Definición de triángulos congruentes

Dos triángulos son congruentes si dos lados y el ángulo comprendido entre ellos, miden lo mismo.

Este criterio nos ayuda a probar que dos ángulos son congruentes.
¡Atención! El ángulo debe ser el que está comprendido entre los dos lados iguales. Este teorema no se podrá aplicar si se tratara de otro ángulo.


Ejemplo 1 (Lado, Ángulo, Lado)

Dados dos triángulos ΔABCΔ ABC y ΔDEFΔ DEF y los siguientes datos:

AB=DEAB = DE

B=E∢B=∢E

BC=FEBC = FE

Lado, Ángulo, Lado

De esto se deduce que los triángulos ΔABCΔ ABC y ΔDEFΔ DEF  son congruentes, por lo tanto, escribiremos:

ΔDEFΔABC Δ DEF ≅ Δ ABC según el criterio de congruencia Lado, Ángulo, Lado (LAL)


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Ejemplo 2 - congruencia (Lado, Ángulo, Lado)

Sobre el lado BD BD han construido dos triángulos: el ΔABDΔ ABD y el ΔBCDΔBCD de modo que:

AD=DCAD = DC

BDA=BDC∢BDA = ∢BDC

Ejercicio con congruencia de triángulos

Demuestra que BAD=BCD∢BAD = ∢BCD

Demostración:

Utilizaremos el criterio que hemos aprendido para probar que el triángulo ΔABDΔ ABD y el ΔCBDΔCBD son triángulos congruentes.

Responderemos que el lado BD BD es común a ambos triángulos (arista)

Así mismo se muestra que: BDA=BDC∢BDA = ∢BDC (ángulo)

y que: AD=DCAD = DC (arista)

Por consiguiente, deduciremos que ΔCBDΔABDΔ CBD ≅ Δ ABD  según el criterio de congruencia Lado, Ángulo, Lado (LAL).

Es primordial prestar atención y escribir el orden correcto de los vértices.

Luego de ver que los triángulos son congruentes podremos concluir que BAD=BCD∢BAD = ∢BCD (Ángulos correspondientes en triángulos congruentes).

QED


Si te interesa este artículo también te pueden interesar los siguientes artículos:

Criterio de congruencia: Ángulo, Lado, Ángulo

Criterio de congruencia: Lado, Lado, Lado

Lado, lado y el ángulo opuesto al mayor de los dos lados

Modo de escritura de la demostración formal en geometría

En la página web de Tutorela encontrarás una variedad de artículos sobre matemáticas.


Ejercicios de criterio de congruencia Lado, Ángulo, Lado

Ejercicio 1

Dado: AM AM bisectriz BMK ∢\text{BMK}

BMK=100° ∢\text{BMK}=100°

KBM=50° ∢\text{KBM=50\degree}

A=K ∢A=∢K

¿A cuál teorema de superposición ΔABMΔBKM ΔABM≅ΔBKM pertenece?

Dado AM bisectriz ∢BMK

Solución

BM=BH BM=BH Lado común

Ángulo A A es igual al ángulo K K dado

Ángulo BMK BMK es igual a 100° 100° grados: dado

Ángulo KBM KBM es igual a 50° 50° grados: dado

Ángulo HMB HMB es igual a 50° 50° grados dado que: AM AM bisectriz de BMK BMK

Ángulo KBM KBM es igual al ángulo AMB AMB y por lo tanto igual a 50° 50° grados

Ángulo ABM ABM es igual al ángulo

KMB KMB

Si los dos ángulos en el triángulo son iguales, entonces el tercero también es igual, los triángulos se superponen de acuerdo con el teorema de superposición A.L.A A.L.A (ángulo lado ángulo)

Respuesta

A.L.A A.L.A (ángulo lado ángulo)


¿Sabes cuál es la respuesta?

Ejercicio 2

Consigna

Las secciones AC AC y BD BD se cortan en el punto K K .

Dado: punto K K intersecta BD BD .

AK=CK AK=CK

ABAC AB⊥AC

CDAC CD⊥AC

¿Según qué teorema de congruencia ΔABKΔCDK ΔABK≅ΔCDK ?

Las secciones AC  y BD se cortan en el punto K

Solución

AK=CK AK=CK

AB AB es perpendicular a AC AC

Una recta perpendicular crea un ángulo recto de 90o 90^o grados, por lo tanto, el ángulo A A es igual a:90o 90^o grados

CD CD es perpendicular a AC AC

Una recta perpendicular crea un ángulo recto de 90o 90^o grados, por lo tanto, el ángulo C C es igual a: 90o 90^o grados

De esto se deduce que los ángulos

A=C=90o A=C=90^o

BK=KD BK=KD

Dado el punto K K que intersecta a

BD BD

Por lo tanto los triángulos superpuestos según el teorema L.A.L L.A.L (lado, ángulo, lado)

Respuesta

Superpuestos: L.A.L L.A.L (lado, ángulo, lado)


Ejercicio 3

Consigna

En la figura dada:

AB=CD AB=CD

BAC=DCA ∢\text{BAC}=∢\text{DCA}

¿Según qué teorema de congruencia ΔABCΔCDA ΔABC≅ΔCDA ?

Ejercicio 3 Consigna En la figura dada AB=CD

Solución

Dado que

AB=CD AB=CD

Dado que los ángulos

BAC=DCA BAC=DCA

Lado AC=AC AC=AC es un lado común

Los triángulos superpuestos según el teorema L.A.L L.A.L (lado, ángulo, lado)

Respuesta

Superpuestos según L.A.L L.A.L (lado, ángulo, lado)


Comprueba que lo has entendido

Ejercicio 4

Consigna

¿Los triángulos que aparecen en el dibujo son congruentes?

En caso afirmativo, explique de acuerdo con qué teorema de superposición

Los triángulos que aparecen en el dibujo son congruentes

Solución

AB=AB=4 AB=AB=4

AC=AC=12 AC=AC=12

Ángulos ACB=ACB=60º ACB=ACB=60º

Los triángulos superpuestos según el teorema L.L.A L.L.A (lado, lado, ángulo)

Respuesta

Superpuestos según L.L.A L.L.A (lado, lado, ángulo)


Ejercicio 5

Consigna

¿Los triángulos CDE CDE y ABE ABE son congruentes?

Si es así, ¿de acuerdo con qué teorema de superposición?

Los triángulos  DCE  y ABE  son congruentes

Solución

Dado que AE=ED AE=ED

ángulos BAE=EDC=50º BAE=EDC=50º

ángulo E=E E=E ángulos opuestos por el vértice

Los triángulos superpuestos según el teorema A.L.A A.L.A

Respuesta

Congruentes según A.L.A A.L.A (ángulo, lado, ángulo


¿Crees que podrás resolverlo?

Ejercicio 6

Consigna

Dada la figura:

AD=BC AD=BC

ADBC AD||BC

¿Según qué teorema se superponen los triángulos ΔABDΔBCD ΔABD≅ΔBCD ?

Dada la figura AD=BC

Solución

Dado que AD=BC AD=BC

Dado que AD AD es paralela a BC BC

Ángulos ADB=CBD ADB=CBD ángulos alternos entre rectas paralelas iguales

BD=BD BD=BD lado común

Triángulos congruentes según teorema A.L.A A.L.A

Respuesta

Según teorema A.L.A A.L.A


Preguntas de repaso

¿Qué es un triángulo?

En geometría es considerada como una figura plana de tres lados, en donde la unión de cada lado, llamados vértices, se forman tres ángulos.


¿Qué son triángulos congruentes?

Si dos triángulos tienen lados y ángulos con la misma medida, entonces serán triángulos congruentes.


¿Qué criterios se pueden usar para determinar si dos triángulos son congruentes?

Existen cuatro criterios para poder determinar si dos triángulos son o no congruentes, los cuales son los siguientes:

  • LAL- Lado, Ángulo, Lado.
  • ALA- Ángulo, Lado, Ángulo.
  • LLL- Lado, Lado, Lado.
  • LLA- Lado, Lado, Ángulo.

¿Cuál es el criterio Lado, Ángulo, Lado?

Este criterio nos dice que dos triángulos son congruentes cuando dos de sus lados y el ángulo comprendido entre ellos correspondientes con el otro triángulo son iguales. Cabe mencionar que si el ángulo a analizar no es el comprendido entre estos dos lados no podemos utilizar este criterio.


¿Para qué tipo de triángulos podemos utilizar los criterios de congruencias?

Los criterios los podemos emplear en cualquier tipo de triángulos, ya sea un triángulo equilátero, un triángulo isósceles o escaleno.


Comprueba tu conocimiento

ejemplos con soluciones para Lado, ángulo, lado

Ejercicio #1

En el dibujo dado:

AB=CD

BAC=DCA ∢\text{BAC}=∢\text{DCA}

¿Según qué teorema, los triángulos Δ ABC ≅Δ CDA son congruentes?

AAADDDCCCBBB

Solución en video

Respuesta

Congruentes por L.A.L

Ir a prácticas