ejemplos con soluciones para Uso del Teorema de Pitágoras: El perímetro de un triángulo

Ejercicio #1

Dado el triángulo de la figura

¿Cuál es su perímetro?

777333AAABBBCCC

Solución en video

Solución Paso a Paso

Para hallar el perímetro de un triángulo, primero tendremos que encontrar todos sus lados.

Dados dos lados y sólo queda hallar el perímetro.

Podemos utilizar el Teorema de Pitágoras
AB2+BC2=AC2 AB^2+BC^2=AC^2
Reemplazamos todos los datos conocidos:

AC2=72+32 AC^2=7^2+3^2
AC2=49+9=58 AC^2=49+9=58
Extraemos la raíz:

AC=58 AC=\sqrt{58}
Ahora que tenemos todos los lados, podemos sumarlos y así hallar el perímetro:
58+7+3=58+10 \sqrt{58}+7+3=\sqrt{58}+10

Respuesta

10+58 10+\sqrt{58} cm

Ejercicio #2

Dado el triángulo de la figura

Dado que el perímetro es 12+45 12+4\sqrt{5} cm

¿Cuál es el largo de hipotenusa?

444AAABBBCCC

Solución en video

Solución Paso a Paso

Calculamos el perímetro del triángulo:

12+45=4+AC+BC 12+4\sqrt{5}=4+AC+BC

Como queremos encontrar la hipotenusa, es decir BC, lo aislamos:

12+454AC=BC 12+4\sqrt{5}-4-AC=BC

BC=8+45AC BC=8+4\sqrt{5}-AC

Encuentre AC usando el teorema de Pitágoras:

AB2+AC2=BC2 AB^2+AC^2=BC^2

42+AC2=(8+45AC)2 4^2+AC^2=(8+4\sqrt{5}-AC)^2

16+AC2=(8+45)22×AC(8+45)+AC2 16+AC^2=(8+4\sqrt{5})^2-2\times AC(8+4\sqrt{5})+AC^2

Reduciremos los dosAC2 AC^2

16=82+2×8×45+(45)22×8×AC2AC45 16=8^2+2\times8\times4\sqrt{5}+(4\sqrt{5})^2-2\times8\times AC-2AC4\sqrt{5}

16=64+645+16×516AC85AC 16=64+64\sqrt{5}+16\times5-16AC-8\sqrt{5}AC

16AC+85AC=64+645+16×516 16AC+8\sqrt{5}AC=64+64\sqrt{5}+16\times5-16

AC(16+85)=128+645 AC(16+8\sqrt{5})=128+64\sqrt{5}

AC=128+64516+85=8(16+85)16+85 AC=\frac{128+64\sqrt{5}}{16+8\sqrt{5}}=\frac{8(16+8\sqrt{5})}{16+8\sqrt{5}}

Reducimos y obtenemos

AC=8 AC=8

Ahora podemos reemplazar AC por el valor que encontramos para BC:

BC=8+45AC BC=8+4\sqrt{5}-AC

BC=8+458=45 BC=8+4\sqrt{5}-8=4\sqrt{5}

Respuesta

45 4\sqrt{5} cm

Ejercicio #3

El perímetro del triángulo es 12 cm

¿Cuál es el largo de los catetos?

555AAABBBCCC

Solución en video

Respuesta

3 cm, 4 cm