De un cuadrilátero a un rectángulo

🏆Ejercicios de de un cuadrilátero a un rectángulo

¿Cómo reconocemos que el cuadrilátero frente a nosotros es en realidad un rectángulo?
¡De dos maneras bastante simples!

Primera forma: chequeo de ángulos

Un rectángulo es un cuadrilátero cuyos ángulos son iguales a 90o 90^o grados, si podemos probar que este también es el caso de nuestro cuadrilátero, podemos probar que es un rectángulo.

Segunda forma: prueba de paralelogramo y luego prueba rectangular

Esta forma es un poco más complicada, ya que involucra dos pasos.
Entonces, ¿por qué es útil?
Hay cinco formas de probar que un cuadrilátero es paralelogramo, así que muchas veces (dependiendo de los datos) será más fácil probar que el cuadrilátero es un paralelogramo.
Una vez que hayamos podido probar esto, podemos pasar al siguiente paso y probar por qué este paralelogramo es un rectángulo.
Recuerda, un rectángulo es un caso especial de un paralelogramo.

Ir a prácticas

¡Pruébate en de un cuadrilátero a un rectángulo!

einstein

Es posible trazar un cuadrilátero que no sea un rectángulo de modo que la suma de los dos ángulos adyacentes sea 180.

Quiz y otros ejercicios

De un cuadrilátero a un rectángulo

Muchas veces se nos pide que demostremos que el cuadrilátero que vemos es un rectángulo, o lo necesitaremos para continuar con nuestra solución.
Para demostrar que un cuadrilátero es un rectángulo, podemos acceder a la demostración de una de las dos maneras:


Primera forma: chequeo de ángulos

Si en el cuadrilátero frente a ti hay 33 ángulos iguales a 90o 90^o grados cada uno, puedes determinar que este cuadrilátero es un rectángulo.
No es necesario verificar el cuarto ángulo ya que sabemos que la suma de los ángulos internos en el cuadrilátero es de 360o 360^o ​​grados e igual a 90o 90^o grados.


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Segunda forma: del cuadrilátero al paralelogramo, del paralelogramo al rectángulo

Esta forma es un poco más compleja y primero debes comprobar que el cuadrilátero frente a ti es un paralelogramo.
Te recordamos brevemente las condiciones para probar el paralelogramo:

  1. Si en un cuadrilátero cada par de lados opuestos también son paralelos entre sí, el cuadrilátero es un paralelogramo.
  2. Si en un cuadrilátero cada par de lados opuestos también son iguales entre sí, el cuadrilátero es un paralelogramo.
  3. Si en un cuadrilátero cada par de lados opuestos son iguales y paralelos, el cuadrilátero es un paralelogramo.
  4. Si en un cuadrilátero, las diagonales se intersecan el cuadrilátero es un paralelogramo.
  5. Si en un cuadrilátero hay dos pares de ángulos opuestos iguales, el cuadrilátero es un paralelogramo.

¿Has demostrado que el cuadrilátero frente a ti es un paralelogramo usando una de las condiciones anteriores?
¡Excelente!
Puedes continuar con el siguiente paso
Ahora, deberás demostrar que el paralelogramo que tiene delante es un rectángulo usando una de estas dos condiciones:

  1. Si el paralelogramo tiene un ángulo de 90 grados, es un rectángulo.
  2. Si las diagonales son iguales en el paralelogramo, es un rectángulo.

¡Maravilloso! Ahora conoces todas las formas para demostrar que este no es un cuadrilátero ordinario, sino un rectángulo.


Ejemplos y ejercicios con soluciones de un cuadrilátero a un rectángulo

Ejercicio #1

Dado el cuadrilátero ABCD para que

AD||BC , AB||CD

Indique si el cuadrilátero es un rectángulo.

AAABBBCCCDDD100°

Solución en video

Solución Paso a Paso

En un rectángulo se sabe que todos los ángulos miden 90 grados.

Como sabemos que el ángulo B es igual a 100 grados, el cuadrilátero no puede ser un rectángulo.

Respuesta

No

Ejercicio #2

Es posible trazar un cuadrilátero que no sea un rectángulo de modo que la suma de los dos ángulos adyacentes sea 180.

Solución en video

Respuesta

Verdadero

Ejercicio #3

Es posible tener un rectángulo con diferentes ángulos.

Solución en video

Respuesta

No verdadero

Ejercicio #4

Es posible trazar un cuadrilátero que no sea un rectángulo de modo que los dos lados opuestos sean iguales entre sí.

Solución en video

Respuesta

Verdadero

Ejercicio #5

Es posible trazar un cuadrilátero que no sea un rectángulo de modo que los dos lados opuestos sean paralelos entre sí.

Solución en video

Respuesta

Verdadero

¿Sabes cuál es la respuesta?
Ir a prácticas