Arcos en un círculo

🏆Ejercicios de las partes del círculo

La parte que se encuentra entre 2 2 puntos en el círculo.
El arco es parte de la circunferencia del círculo y no pasa dentro del círculo.

Diagrama de un círculo que ilustra componentes clave: un ángulo central etiquetado como theta, un radio, un arco (verde) y un sector (sombreado en azul). El diagrama resalta las relaciones entre estos elementos en el contexto de los círculos. Incluido en una guía sobre arcos y sectores en un círculo.

Ir a prácticas

¡Pruébate en las partes del círculo!

einstein

¿Dónde se encuentra un punto cuya distancia al centro del círculo es menor?

Quiz y otros ejercicios

Arcos en un círculo

Estamos aquí para explicarte qué es un arco en un círculo de la manera más fácil y lógica.
Primero, recordemos cuál es la forma de un arco...
Cuando miras al cielo y ves un arcoíris, se parece a esto, ¿verdad?

Arcoíris

¿Qué tal un lazo para el cabello? De igual manera se ve bastante similar:

lazo para el cabello

Ahora que recordamos la forma del arco, nos será más fácil recordar qué es un arco en un círculo.


¿Qué es un arco en un círculo?

Un arco en un círculo es la parte entre 2 2 puntos en el círculo.
Presta atención: el arco está en el círculo y no dentro de él. Es parte de la circunferencia del círculo y recuerda mucho al arcoíris de la vida cotidiana.


Mostrémoslo en la figura:

Frente a nosotros hay un círculo.
Si tomamos 2 2 puntos encima del círculo, por ejemplo, A A y B B ,
la parte del círculo entre estos dos puntos será un arco.
Preste atención que no dibujamos una línea entre los puntos dentro del círculo (cuerda)
sino que pintamos la parte superior del círculo como parte de su circunferencia.

tomamos 2 puntos encima del círculo, por ejemplo, A y B


Aviso:
El arco puede tener cualquier longitud e incluso si no nos recuerda al arco de la vida cotidiana, seguirá siendo un arco en círculo.
Mientras está en el círculo entre 2 2 puntos como parte de la circunferencia, el círculo se llama arco.
Veremos ejemplos donde el arco en el círculo no se parece a una forma de arco:

2 puntos encima del círculo


Ejemplos y ejercicios con soluciones de arcos en un círculo

Ejercicio #1

Un círculo tiene la siguiente ecuación:
x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2

El punto O es su centro y está en el segundo cuadrante (a0 a\neq0 )


Usa el método de completar el cuadrado para encontrar el centro del círculo y su radio en términos de a a .

Solución Paso a Paso

 Recordemos que la ecuación de un círculo con su centro en O(xo,yo) O(x_o,y_o) y su radio R R es:

(xxo)2+(yyo)2=R2 (x-x_o)^2+(y-y_o)^2=R^2 Ahora, veamos la ecuación del círculo dado:

x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2
Intentaremos reorganizar esta ecuación para que coincida con la ecuación del círculo, o en otras palabras, nos aseguraremos de que en el lado izquierdo esté la suma de dos expresiones binomiales al cuadrado, una para x y otra para y.

Haremos esto utilizando el método de "completar el cuadrado":

Recordemos la fórmula corta para elevar un binomio al cuadrado:

(c±d)2=c2±2cd+d2 (c\pm d)^2=c^2\pm2cd+d^2 Trataremos por separado la parte de la ecuación relacionada con x en la ecuación (subrayada):

x28ax+y2+10ay=5a2 \underline{ x^2-8ax}+y^2+10ay=-5a^2

Aislaremos estos dos términos de la ecuación y los trataremos por separado.

Presentaremos estos términos en una forma similar a la forma de los dos primeros términos en la fórmula abreviada (elegiremos la forma de resta de la fórmula del binomio al cuadrado ya que el término en la primera potencia con el que estamos tratando es8ax 8ax , que tiene un signo negativo):

x28axc22cd+d2x22x4ac22cd+d2 \underline{ x^2-8ax} \textcolor{blue}{\leftrightarrow} \underline{ c^2-2cd+d^2 }\\ \downarrow\\ \underline{\textcolor{red}{x}^2\stackrel{\downarrow}{-2 }\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}} \textcolor{blue}{\leftrightarrow} \underline{ \textcolor{red}{c}^2\stackrel{\downarrow}{-2 }\textcolor{red}{c}\textcolor{green}{d}\hspace{2pt}\boxed{+\textcolor{green}{d}^2}} \\ Observa que en comparación con la fórmula corta (que está en el lado derecho de la flecha azul en el cálculo anterior), en realidad estamos haciendo la comparación:

{xc4ad \begin{cases} x\textcolor{blue}{\leftrightarrow}c\\ 4a\textcolor{blue}{\leftrightarrow}d \end{cases} Por lo tanto, si queremos obtener una forma de binomio al cuadrado de estos dos términos (subrayados en el cálculo), necesitaremos agregar el término(4</span><spanclass="katex">a)2 (4</span><span class="katex">a)^2 , pero no queremos cambiar el valor de la expresión, y por lo tanto también restaremos este término de la expresión.

Es decir, agregaremos y restaremos el término (o expresión) que necesitamos para "completar" la forma del binomio al cuadrado,

En el siguiente cálculo, el "truco" está resaltado (dos líneas bajo el término que agregamos y restamos de la expresión),

A continuación, pondremos la expresión en la forma de binomio al cuadrado la expresión apropiada (resaltada con colores) y en la última etapa simplificaremos la expresión:

x22x4ax22x4a+(4a)2(4a)2x22x4a+(4a)216a2(x4a)216a2 x^2-2\cdot x\cdot 4a\\ x^2-2\cdot x\cdot4a\underline{\underline{+(4a)^2-(4a)^2}}\\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}+(\textcolor{green}{4a})^2-16a^2\\ \downarrow\\ \boxed{ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2}\\ Resumamos los pasos que hemos dado hasta ahora para la expresión con x.

Haremos esto dentro de la ecuación dada:

x28ax+y2+10ay=5a2x22x4a+(4a)2(4a)2+y2+10ay=5a2(x4a)216a2+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2 \\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot\textcolor{green}{4a}\underline{\underline{+\textcolor{green}{(4a)}^2-(4a)^2}}+y^2+10ay=-5a^2\\ \downarrow\\ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2+y^2+10ay=-5a^2\\ Continuaremos y haremos lo mismo para las expresiones con y en la ecuación resultante:

(Ahora elegiremos la forma de adición de la fórmula del binomio al cuadrado ya que el término en la primera potencia con el que estamos tratando 10ay 10ay tiene un signo positivo)

(x4a)216a2+y2+10ay=5a2(x4a)216a2+y2+2y5a=5a2(x4a)216a2+y2+2y5a+(5a)2(5a)2=5a2(x4a)216a2+y2+2y5a+(5a)225a2=5a2(x4a)216a2+(y+5a)225a2=5a2(x4a)2+(y+5a)2=36a2 (x-4a)^2-16a^2+\underline{y^2+10ay}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a}=-5a^2\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a\underline{\underline{+(5a)^2-(5a)^2}}}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{\textcolor{red}{y}^2+2\cdot\textcolor{red}{ y}\cdot \textcolor{green}{5a}+\textcolor{green}{(5a)}^2-25a^2}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+(\textcolor{red}{y}+\textcolor{green}{5a})^2-25a^2=-5a^2\\ \boxed{(x-4a)^2+(y+5a)^2=36a^2} En el último paso, movemos los números libres al segundo lado y combinamos términos semejantes.

Ahora que la ecuación del círculo dado está en la forma de la ecuación general del círculo mencionada anteriormente, podemos extraer fácilmente tanto el centro del círculo dado como su radio:

(xxo)2+(yyo)2=R2(x4a)2+(y+5a)2=36a2(x4a)2+(y(5a))2=36a2 (x-\textcolor{purple}{x_o})^2+(y-\textcolor{orange}{y_o})^2=\underline{\underline{R^2}} \\ \updownarrow \\ (x-\textcolor{purple}{4a})^2+(y+\textcolor{orange}{5a})^2=\underline{\underline{36a^2}}\\ \downarrow\\ (x-\textcolor{purple}{4a})^2+(y\stackrel{\downarrow}{- }(-\textcolor{orange}{5a}))^2=\underline{\underline{36a^2}}\\

En el último paso, nos aseguramos de obtener la forma exacta de la ecuación general del círculo, es decir, donde solo se realiza resta dentro de las expresiones al cuadrado (enfatizado con una flecha)

Por lo tanto, podemos concluir que el centro del círculo está en:O(xo,yo)O(4a,5a) \boxed{O(x_o,y_o)\leftrightarrow O(4a,-5a)} y extraer el radio del círculo resolviendo una ecuación simple:

R2=36a2/R=±6a R^2=36a^2\hspace{6pt}\text{/}\sqrt{\hspace{4pt}}\\ \rightarrow \boxed{R=\pm6a}

Recuerda que el radio del círculo, por su definición, es la distancia entre cualquier punto del diámetro y el centro del círculo. Como es positivo, debemos descalificar una de las opciones que obtuvimos para el radio.

Para hacer esto, utilizaremos la información restante que no hemos usado aún, que es que el centro del círculo dado O está en el segundo cuadrante.

Es decir:

O(x_o,y_o)\leftrightarrow x_o<0,\hspace{4pt}y_o>0 (O en palabras: el valor de x del centro del círculo es negativo y el valor de y del centro del círculo es positivo)

Por lo tanto, debe ser cierto que:

\begin{cases} x_o<0\rightarrow (x_o=4a)\rightarrow 4a<0\rightarrow\boxed{a<0}\\ y_o>0\rightarrow (y_o=-5a)\rightarrow -5a>0\rightarrow\boxed{a<0} \end{cases}

Concluimos que a<0 y como el radio del círculo es positivo, concluimos que necesariamente:

R=6a \rightarrow \boxed{R=-6a} Resumamos:

O(4a,5a),R=6a \boxed{O(4a,-5a), \hspace{4pt}R=-6a} Por lo tanto, la respuesta correcta es la opción d. 

Respuesta

O(4a,5a),R=6a O(4a,-5a),\hspace{4pt}R=-6a

Ejercicio #2

¿En cuál de los círculos el segmento trazado es el radio?

Solución en video

Respuesta

Ejercicio #3

¿En cuál de los círculos está el punto marcado en el círculo y no sobre la circunferencia?

Solución en video

Respuesta

Ejercicio #4

Calcula el área de la sección pintada de rojo. Dado que el área del círculo es 12.

240

Solución en video

Respuesta

8

Ejercicio #5

Calcula la longitud del arco pintado en rojo.

Dada la circunferencia igual a 24.

150°150°150°

Solución en video

Respuesta

10 10

¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento
Ir a prácticas