La aplicación del teorema de Pitágoras en un ortoedro o cuboide

🏆Ejercicios de uso del teorema de pitágoras en el ortoedro

El ortoedro o cuboide es un prisma rectangular, una figura tridimensional, es decir, tiene largo, ancho y alto (o profundidad). A demás, los ángulos entre los diferentes planos son rectos, lo que nos permite hacer uso del teorema de Pitágoras para calcular la longitud de distintas secciones del ortoedro.

1- Los usos del teorema de Pitágoras en un ortoedro

Ir a prácticas

¡Pruébate en uso del teorema de pitágoras en el ortoedro!

einstein

Dado el ortoedro de la figura, ¿cuál es el ángulo entre la diagonal BH y la cara ABFE?

BBBCCCGGGFFFAAADDDHHHEEE

Quiz y otros ejercicios

Lo ilustraremos con un ejemplo. 

Dado un ortoedro como el representado en el esquema.

Las dimensiones de la caja son 6 6 , 8 8 y 10 10 .

Se nos solicita calcular las dimensiones de la diagonal de la base inferior de la caja. 

Observaremos el esquema y veremos que, la base de la caja es, de hecho, un rectángulo cuyas aristas miden 6 6 y 8 8 . Estas arista sirven también como catetos con un ángulo recto entre ellos. 

Por consiguiente, utilizaremos el teorema de Pitágoras y calcularemos la hipotenusa que, de hecho, es la diagonal requerida. 

Conforme al teorema de Pitágoras obtendremos:

X=10 X=10

Es decir, la diagonal mide 10 10

1- Los usos del teorema de Pitágoras en un ortoedro


Ejemplos y ejercicios con soluciones de la aplicación del teorema de Pitágoras en un ortoedro o cuboide

Ejercicio #1

Dado el ortoedroABCDA1B1C1D1 ABCDA^1B^1C^1D^1

Halla la medida de la diagonal del ortoedro

777101010444AAABBBCCCDDDAAA111BBB111CCC111DDD111

Solución en video

Solución Paso a Paso

Observemos la cara CC1D1D y usemos el teorema de Pitágoras para encontrar la diagonal de la cara:

D1C12+CC12=D1C2 D_1C_1^2+CC_1^2=D_1C^2

Insertemos los datos conocidos:

102+42=D1C2 10^2+4^2=D_1C^2

116=D1C2 116=D_1C^2

Concentrémonos un poco en el triángulo BCD1 y usemos el teorema de Pitágoras para encontrar la diagonal BD1:

D1C2+CB2=BD12 D_1C^2+CB^2=BD_1^2

Insertamos los datos conocidos:

116+72=BD12 116+7^2=BD_1^2

116+49=BD12 116+49=BD_1^2

165=BD12 165=BD_1^2

Encontremos la raíz:

165=BD1 \sqrt{165}=BD_1

Respuesta

165 \sqrt{165}

Ejercicio #2

Dado el ortoedro de la figura, ¿cuál es el ángulo entre la diagonal BH y la cara ABFE?

BBBCCCGGGFFFAAADDDHHHEEE

Solución en video

Respuesta

HBE HBE

Ejercicio #3

Dado el ortoedroABCDA1B1C1D1 ABCDA^1B^1C^1D^1

Dado que

AB=7 AB=7

AA1=5 AA^1=5

Halla la diagonal del ortoedro.

777555AAABBBCCCDDDAAA111BBB111CCC111DDD111

Solución en video

Respuesta

Faltan datos

Ejercicio #4

Dado el ortoedro de la figura, calcula la medida de la línea punteada

444777

Solución en video

Respuesta

65 \sqrt{65}

Ejercicio #5

Dado el ortoedro de la figura

Dado queDCC1D1 DCC^1D^1 es un cuadrado.

Halla el largo de la línea punteada

121212555DDDAAABBBCCCD1D1D1A1A1A1B1B1B1C1C1C1

Solución en video

Respuesta

13 13

¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento
Ir a prácticas