Ángulos correspondientes

🏆Ejercicios de ángulos sobre rectas paralelas

Los ángulos correspondientes son los que se encuentran del mismo lado de la transversal que corta dos rectas paralelas y están en el mismo nivel respecto a la recta paralela. Los ángulos correspondientes son del mismo tamaño. 

La siguiente imagen ilustra dos pares de ángulos correspondientes, los primeros se han pintado de rojo y los otros de azul.

Angulos correspondientes nuevo

Ir a prácticas

¡Pruébate en ángulos sobre rectas paralelas!

einstein

Dados los ángulos de la figura

¿Cuál es la conexión entre ellos?

\( \)αβ

Quiz y otros ejercicios

¿Qué son los ángulos correspondientes?

Antes de ofrecer la explicación específica sobre los ángulos correspondientes es necesario entender en qué casos se pueden formar estos ángulos. La forma básica de describirlo es con un diagrama de dos rectas paralelas con una transversal que las corta (si necesitas más detalles es conveniente que consultes el artículo específico que trata el tema de las «Rectas paralelas»), tal como se puede observar en esta ilustración:

Rectas_Paralelas_con_eje_de_Angulos_alternos.original (1)

Como mencionamos, hay dos rectas paralelas A A y B B con una transversal C C que corta a ambas. 


Otros tipos de ángulos

Hay otros tipos de ángulos que se forman en casos como el que acabamos de exponer. Los analizaremos brevemente:

Ángulos alternos

Son los ángulos que se encuentran en lados opuestos a la transversal que corta dos rectas paralelas y no están en el mismo lado respecto a la recta paralela. Los ángulos alternos son del mismo tamaño. 

Para más detalles dirígete al artículo específico que trata el tema de los «ángulos alternos».

1a. Imagen Ángulos alternos


¡Únete a 30,000 estudiantes destacados en matemáticas!
Práctica ilimitada, guía de expertos: mejora tus habilidades matemáticas hoy
Comprueba tu conocimiento

Ángulos opuestos por el vértice

Se forman por dos rectas que se cortan, tienen un vértice en común y se encuentran uno frente al otro. Los ángulos opuestos por el vértice son del mismo tamaño. 

Para más detalles dirígete al artículo específico que trata el tema de los «ángulos opuestos por el vértice».

angulos opuestos al vertice


Ángulos colaterales

Son los ángulos que se encuentran en el mismo lado de la transversal que corta dos rectas paralelas y no están en el mismo nivel respecto a la recta paralela. Juntos completan 180o 180^o grados, es decir, la suma de dos ángulos colaterales es igual a ciento ochenta grados. 

Para más detalles dirígete al artículo específico que trata el tema de los «ángulos colaterales».

Ángulos colaterales externos y internos(1)



¿Sabes cuál es la respuesta?

Ejercicios con ángulos correspondientes

Ejercicio 1

En cada una de las siguientes ilustraciones indica si se trata de ángulos correspondientes o no. En ambos casos explica el porqué. 

ilustracion 1 nuevo

ilustracion 2 nuevo

ilustracion 3 nuevo

Solución: 

Esquema No 1

En este caso realmente se trata de ángulos correspondientes ya que responden a los dos criterios de su definición, es decir, se trata de dos ángulos que se encuentran del mismo lado de la transversal que corta las dos rectas paralelas y los ángulos están en el mismo lado respecto a la recta paralela.

Esquema No 2:

En este caso no se trata de ángulos correspondientes ya que no responden a los criterios de su definición, es decir, se trata de dos ángulos que se encuentran en ambos lados de la transversal que corta las dos rectas paralelas y los dos ángulos no están en el mismo lado respecto a la recta paralela.

Esquema No 3:

En este caso realmente se trata de ángulos correspondientes ya que responden a los dos criterios de su definición, es decir, se trata de dos ángulos que se encuentran del mismo lado de la transversal que corta las dos rectas paralelas y los ángulos están en el mismo lado respecto a la recta paralela.
Entonces:

Esquema No 1: ángulos correspondientes

Esquema No 2: no son ángulos correspondientes, sin embargo, son ángulos alternos internos.

Esquema No 3: ángulos correspondientes.


Ejercicio 2

Dado el triángulo BCD \triangle BCD tal como se ve ilustrado en la siguiente imagen:.

Angulos_correspondientes_-_Ejercicio_02.original

El ángulo B B del triángulo BCD \triangle BCD es igual a 30o 30^o .

Además, se sabe que, la recta KL KL dentro del triángulo es paralela a la arista (o lado) del triángulo y el ángulo K K del triángulo BKL BKL es igual a 45o 45^o .

Encuentra los otros dos ángulos del triángulo BCD \triangle BCD .

Solución

Al observar la imagen vemos que, tenemos dos rectas paralelas (KL KL y DC DC ) que las corta una transversal (la arista DB DB ). El ángulo D D del triángulo es igual al ángulo BKL BKL ya que se trata de ángulos correspondientes, es decir, se trata de dos ángulos ubicados del mismo lado de la transversal (DB DB ) que corta las dos rectas paralelas (KL KL y DC DC ) y estos ángulos se encuentran en el mismo lado respecto a la recta paralela.

De lo anterior deducimos que el ángulo D D del triángulo equivale a 45° 45°

También sabemos que la suma de los tres ángulos de cualquier triángulo equivale a 180° 180° .

Por consiguiente, el ángulo C equivale a 180°30°45°=105° 180°-30°-45°=105°

Entonces

El ángulo D D mide 45° 45° .

El ángulo C C mide 105° 105° .


Comprueba que lo has entendido

Ejercicio 3

Dado el paralelogramo KLMN KLMN . Además, sabemos que el segmento AB AB es paralelo a la arista NK NK

Angulos_correspondientes_-_Ejercicio_03.original

Encuentra el ángulo correspondiente al ángulo L L , remarcado en el esquema.

Solución: 

Luego de observar brevemente la imagen veremos que, el segmento AB AB es paralelo no sólo a la arista NK NK , sino también a la arista (o lado) LM LM . La idea aquí es que se trata de dos aristas opuestas del paralelogramo que tienen de la misma longitud y son paralelas entre sí. Por lo tanto, la arista LM LM también es paralela a la arista AB AB

Ahora buscaremos en la imagen el ángulo correspondiente al ángulo L L . Observando rápidamente podemos afirmar que, el ángulo correspondiente al ángulo L L es el KAB KAB . Como sabemos que, este ángulo junto al ángulo L L cumplen con los dos criterios de la definición de los ángulos correspondientes, es decir, se trata de dos ángulos ubicados del mismo lado de la transversal (arista KL KL ) que corta las dos rectas paralelas (AB AB y LM LM ) y los ángulos también están en el mismo nivel respecto a la recta paralela.

Respuesta:

Angulos_correspondientes_-_Ejercicio_03_-_Soluc.original

El ángulo correspondiente al ángulo L L es el KAB KAB


Ejercicio 4

Dado el triángulo ABC isósceles

En su interior, en la figura hay una línea ED ED que es paralela de CB CB .

Ejercicio 2 Dado el triángulo ABC isósceles

Pregunta:

¿Es posible comprobar que el triángulo AED \triangle AED es también isósceles?
Solución: 

Para comprobar que el triángulo es isósceles, es necesario comprobar que los lados son iguales o que los ángulos opuestos son iguales.

Dado que los triángulos ABC \triangle ABC y ACE \triangle ACE son iguales (debido a que están enfrentados a lados iguales), son suplementarios e iguales a los ángulos AED \sphericalangle AED y ADE \sphericalangle ADE .

Respuesta:

Por lo tanto, el triángulo AED \triangle AED es isósceles.


¿Crees que podrás resolverlo?

Ejercicio 5

¿Cuál es el valor de X X ?

Ejercicio 5 Cuál es el valor de X

Solución: 

Los ángulos dados son ángulos correspondientes, por lo tanto son iguales.

Es decir, todo lo que se necesita es resolver la siguiente ecuación resultante:

3X10=2X+30 3X-10=2X+30

3X2X=30+10 3X-2X=30+10

X=40 X=40

Así encontramos el valor de X X .


Ejercicio 6

Contestar a la pregunta sabiendo que ABCD es un rectángulo.

¿Cuáles son los ángulos marcados con la letra X X en la figura?

¿Y cuáles con la letra Y Y ?

Contestar a la pregunta sabiendo que ABCD ABCD es un rectángulo.

Solución: 

Identificación y definición de elementos.

Dado que tenemos que contestar la pregunta sabiendo que ABCD ABCD es un rectángulo.

¿Cuáles son los ángulos marcados con la letra X X en la figura?

¿Y cuáles con la letra ABCD ABCD ?

  1. Correspondiente / adyacente
  2. Complementario / alterno
  3. Suplementario / adyacente
  4. Opuesto por el vértice / Opuesto por el vértice

Respuesta:

Correspondiente / adyacente


Comprueba tu conocimiento

Ejercicio 7

Dado que a a , b b y c c son paralelas

Ejercicio 7 Dado que a,b y c son paralelas

Tarea:

Encontrar el valor del ángulo α \alpha

Solución:

Primero identificamos el ángulo 53o 53^o , utilizando la propiedad de ángulo opuesto por el vértice escribimos dicho valor en la parte opuesta al ángulo.

Por otra parte, sabemos que la suma de los ángulos internos del triángulo formado por las rectas transversales que cortan a las rectas paralelas a a y b b es igual a 180o 180^o , por lo que entonces tendríamos la siguiente ecuación:

α+78º+53º=180º \alpha + 78º + 53º = 180º

Despejando posteriormente el ángulo, tenemos lo siguiente:

α=180º78º53º \alpha = 180º - 78º - 53º

α=49º \alpha = 49º

Respuesta:

α=49º \alpha=49º


Ejercicio 8

Dado el polígono de la figura

Ejercicio 7  Dado el polígono de la figura

Tarea:

¿Cuál de los pares rectos es paralelo entre sí?

Solución: 

  • Entre a a y b b pasa una recta que suma ángulos alternos cuya igualdad se puede comprobar.

30°+150°=180° 30°+150°=180°

  • Entre b b y g g se puede identificar un ángulo alterno interno que no es igual, por lo tanto no es una recta paralela.
  • Entre b b y d d se tienen ángulos correspondientes que no son iguales, por lo tanto, no son rectas paralelas.
  • No hay datos sobre e e y b b debido a que no los atraviesa ninguna una recta.

¿Sabes cuál es la respuesta?

Ejercicio 9

La siguiente figura muestra tres rectas paralelas a a , b b y c c .

Dado que a a , b b y c c son paralelas

a,b y c son paralelas

Consigna:

Encontrar el valor de α α

Solución:

Asignamos con la letra β β al ángulo con el que se tiene una correspondencia con el ángulo 130o 130^o , como se muestra en la imagen.

El ángulo β β y el ángulo 130o 130^o son correspondientes y por lo tanto son iguales.

El ángulo δ δ y el ángulo 45o 45^o son ángulos alternos internos y por lo tanto son iguales y se tiene la siguiente igualdad:

α=βδ α=β-δ

α=130°45° α=130°-45°

α=85° α=85°

El ángulo β y el ángulo 130

Respuesta:

α=85° α=85°


Preguntas sobre el tema:

¿Qué significa ángulos correspondientes?

Son los que se encuentran del mismo lado de la transversal que corta dos rectas paralelas y están en el mismo lado respecto a la recta paralela.


¿Cuál es la combinación de los ángulos correspondientes?

Su valor es el mismo por estar en el mismo lado con respecto a las mismas rectas paralelas.


¿Qué significan los lados o ángulos correspondientes en los triángulos?

Los ángulos correspondientes tendrán la misma medida en triángulos congruentes.


¿Cuántos miden los ángulos correspondientes?

Miden lo mismo.


¿Qué son los ángulos correspondientes y cuáles son sus características?

Son ángulos no adyacentes situados en un mismo lado de la recta transversal que corta a las paralelas y su principal característica es que son iguales.


¿Qué es el lado correspondiente?

Son aquellos que tienen la misma longitud en triángulos congruentes.


Si está interesado en aprender más sobre otros temas de ángulos, puede ingresar a uno de los siguientes artículos:

En la página web de Tutorela encontrarás una variedad de artículos sobre matemáticas.


Comprueba que lo has entendido

ejemplos con soluciones para Ángulos correspondientes

Ejercicio #1

Las rectas en el dibujo son paralelas entre sí.

¿Qué ángulos se describen en la figura?

Solución Paso a Paso

Recordemos que los ángulos alternos se pueden definir como un par de ángulos que se pueden encontrar en el aspecto opuesto de una recta trazada para cortar dos líneas paralelas entre sí.

Además, estos ángulos se ubican en el nivel opuesto con respecto a la recta correspondiente a la que pertenecen.

Respuesta

Alternos

Ejercicio #2

¿Es posible tener dos ángulos adyacentes, uno de los cuales sea obtuso y el otro recto?

Solución en video

Solución Paso a Paso

Recuerda la definición de ángulos adyacentes:

Los ángulos adyacentes siempre se complementan hasta ciento ochenta grados, es decir, su suma es 180 grados.

Esta situación es imposible ya que un ángulo recto es igual a 90 grados, un ángulo obtuso es mayor a 90 grados.

Por lo tanto, en conjunto su suma será mayor que 180 grados.

Respuesta

Falso

Ejercicio #3

a a es paralela a

b b

Determina cuál de las afirmaciones es correcta.

αααβββγγγδδδaaabbb

Solución en video

Solución Paso a Paso

Recuerda la definición de ángulos adyacentes:

Los ángulos adyacentes son ángulos cuya formación es posible en una situación en la que hay dos líneas rectas que se cruzan. Estos ángulos se forman en el punto donde se produce la intersección, uno contiguo al otro, y de aquí también sale su nombre.

Recuerda la definición de ángulos colaterales:

Dos ángulos formados cuando dos o más líneas paralelas son cortadas por una tercera línea. Los ángulos colaterales están del mismo lado de la línea de corte e incluso están a diferente altura en relación con la línea paralela a la que son adyacentes.

Por lo tanto, la respuesta C es correcta para esta definición.

Respuesta

β,γ \beta,\gamma Colateralesγ,δ \gamma,\delta Adyacentes

Ejercicio #4

¿En cuál de los dibujos hay ángulos α,β \alpha,\beta opuestos por el vértice?

Solución Paso a Paso

Recuerda la definición de ángulos opuestos por el vértice:

Los ángulos opuestos por el vértice son ángulos cuya formación es posible cuando dos rectas se cruzan, y se forman en el punto de intersección, una enfrentada a la otra. Los ángulos agudos son iguales en tamaño.

El dibujo de la respuesta A corresponde a esta definición.

Respuesta

αααβββ

Ejercicio #5

¿Qué ángulos se describen en el dibujo?

Solución Paso a Paso

Como los ángulos no están en líneas paralelas, ninguna de las respuestas es correcta.

Respuesta

Ninguna de las respuestas

Ir a prácticas